Sec 9.9
pgs. 420-422
\#2, 3, 5, 7, 9, 10, 11, 14, 16, 17, 18, 22

a. $8 / 17$
d. $15 / 17$
b. $15 / 17$
e. $8 / 17$
c. $8 / 15$
f. $15 / 8$
\#3

a. $\frac{\sqrt{2}}{2}$
b. $\frac{\sqrt{2}}{2}$
C. 1
\#5 if $\tan M=\frac{3}{4}$, find $\cos 4 M$

\#7 Find. a. $B C$ 2 $\sqrt{6}$
b. $\sin \Varangle A=\frac{2 \sqrt{6}}{7}$

$$
x=2 \sqrt{6}
$$

$$
x^{2}=24
$$

\#9
a. $\cos x A=\frac{7}{25}$
b $\sin \Varangle E=\frac{8}{17}$
c. $\sin \Varangle D F G=\frac{8}{10}=\frac{4}{5}$

\#10 Use the fact that $\sin 40^{\circ} \approx 0.6428$ to find the height of the kite to the nearest meter

$$
\begin{gathered}
\sin 40=\frac{h}{200} \\
.6428=\frac{h}{200} \\
h \approx 129
\end{gathered}
$$

\#II a. If $\tan x A=\frac{1}{1}$, find $m \Varangle A$

A

\#14 Given: RHOM is a rhombus

$$
R O=18 \quad H M=24
$$

Find: a. $\cos \triangle B R M \quad \frac{9}{15}=\frac{3}{5}$

b. $\tan \Varangle B H O \quad \frac{9}{12}=\frac{3}{4}$
\#16

b. $\sin \Varangle A=\tan \Varangle A$ \square

$$
y / z \quad y / x
$$

c. $\sin \Varangle A=\cos \Varangle A$

$$
y / z \quad x / z
$$

\#17 If $\triangle E Q U$ is equilateral and \triangle RAT is a right Δ with
$R A=2$
$R T=1$

$$
\angle T=90^{\circ}
$$

$$
\sin x E=\frac{x \sqrt{3}}{2 x}=\frac{\sqrt{3}}{2}
$$

$$
\cos \Varangle A=\frac{\sqrt{3}}{2}
$$

Show that $\sin \Varangle E=\cos \Varangle A$

\#18 Of the slope of $\overrightarrow{A B}$ is $\frac{5}{8}$. Find the tangent of $\Varangle B A C$

$$
\tan \Varangle A=\frac{5}{8}
$$

\# 22

$$
x=\frac{6 \sqrt{2}}{2}
$$

$$
x=3 \sqrt{2}
$$

$$
\begin{aligned}
& \tan \Varangle K E I=\frac{3 \sqrt{2}}{\sqrt{31}} \cdot \frac{\sqrt{31}}{\sqrt{31}}=\frac{3 \sqrt{62}}{31} \\
& (3 \sqrt{2})^{2}+y^{2}=7^{2} \\
& 18+y^{2}=49 \\
& y^{2}=31 \\
& y=\sqrt{31}
\end{aligned}
$$

