#2, 3, 5, 7, 9, 10, 11, 14, 16, 17, 18, 22

#5 If
$$tan M = \frac{3}{4}$$
, find $cos \times M$

$$\cos x M = \frac{4}{5}$$

Find.

c tan
$$\times B = \frac{5}{2\sqrt{6}} \cdot \sqrt{6} = \frac{5\sqrt{6}}{12}B$$

- a. $\cos \angle A = \frac{1}{25}$
- b sin 4 E = 17

#10 Use the fact that sin 40 × 0.6428 to find the height of the kite to the nearest meter

$$\sin 40 = \frac{h}{200}$$

$$.6428 = \frac{h}{200}$$

#11 a. If
$$tan & A = 1$$
, find $m & A$

b. If $\sin \angle P = 0.5$, find $m \angle P$ $t \left(\frac{1}{2}\right)$

#14 Given: RHOM is a rhombus RO=18 HM=24

b.
$$\tan \times BHO \frac{9}{12} = \frac{3}{4}$$

#16

Always, Sometimes, Never

- a. $\sin A = \cos A B$ $\frac{1}{2}$ $\frac{1}{2}$
- b. sin 4 A = tan 4 A N 1/2 Y/x
- c. $\sin \angle A = \cos \angle A = \int \frac{1}{2} \frac{1}{2}$

#17 If DEQUIS equilateral and DRAT is a right D with

$$\sin 4E = \frac{x \cdot 3}{2x} = \boxed{3}$$

$$\cos A = \sqrt{\frac{3}{2}}$$

Show that sin & E = cos &A

#18 Of the slope of AB is &. Find the tangent of &BAC

 $tan AA = \frac{5}{8}$

#22

$$tan \ 4 \ KEI = \frac{3\sqrt{2} \cdot \sqrt{31}}{\sqrt{31}} = \frac{3\sqrt{62}}{31}$$

$$(3(2)^{2} + y^{2} = 7^{2}$$

 $18 + y^{2} = 49$
 $y^{2} = 31$
 $y = \sqrt{31}$