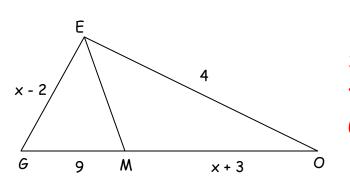

Geometry Honors Semester 2 Review

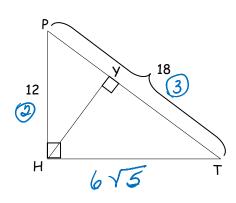
Name____

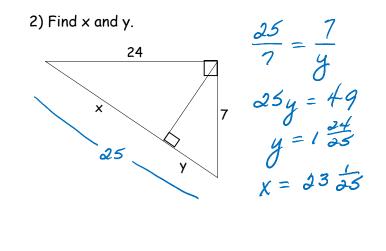
Chapter 8


- 1) Find a, b, and c 18 10 10 10 10 20
- $\frac{18}{6} = \frac{3}{1} \frac{a}{20 a} \qquad \frac{18}{34} = \frac{3}{4} = \frac{b}{10}$ $\frac{18}{34} = \frac{3}{44} = \frac{b}{10}$ $\frac{18}{34} = \frac{3}{10}$ $\frac{18}{34} = \frac{3}{10}$ $\frac{18}{34} = \frac$

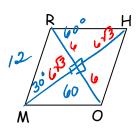
2) Find EF, FG and GH if EH = 25

 $EF = 6\left(\frac{3}{3}\right)$ 15 × =25 X = 5 = 10 $FG=5\left(\frac{2}{3}\right)$ =83 GH= 4(===) = 6 3


3) $\angle GEM \cong \angle MEO$. Find x.



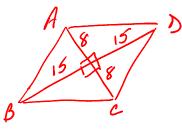
 $\frac{x-2}{9} = \frac{4}{x+3}$ $x^{2}+x-6 = 36$ $x^{2}+x-42 = 0$ (x+7)(x-6) = 0 x = -7(6)


Chapter 9

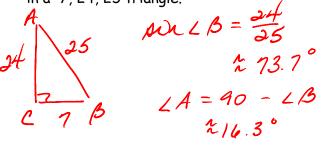
1) Find HT. Leave EXACT answer.

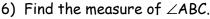
3) The perimeter of the rhombus RHOM is 48 and $\angle R$ is 120°. Find the sum of the diagonals. (Do NOT use TRIG)

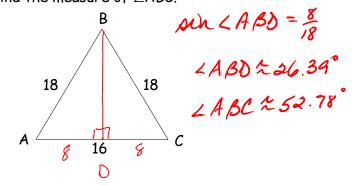
 $12 + 12\sqrt{3}$


HarchAC= 15

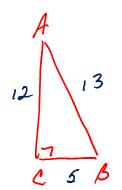
LBAC = 4an - (15)

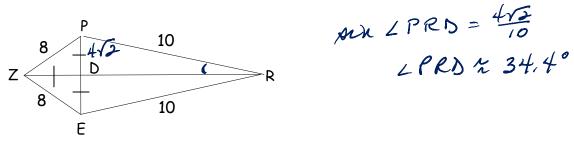

L BAD & 123.86°


× 61.93°


4) Find the largest interior angle of a rhombus with diagonals 16 and 30.

5) Find the measures of the three angles in a 7, 24, 25 triangle.

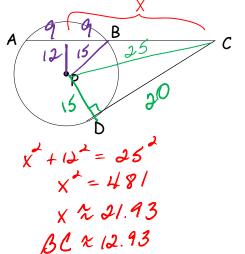



7) In $\triangle ABC$, sin $A = \frac{5}{13}$ and $\angle C$ is a right angle. Find the following:

(Write answers as fractions and draw the triangle.)

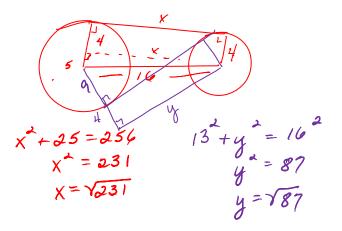
 $\sin B = \frac{12}{13}$ $\cos B = \frac{5}{13}$ $\tan B = \frac{12}{5}$

8) Find the measure of $\angle PRD$ to the nearest tenth of a degree for kite PREZ.

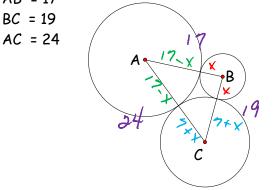


9) A person is standing on a cliff looking at a tree below. If the cliff is 250 feet high and the person has to look down with a 32° angle of depression to see the bottom of the tree, how far is the tree from the cliff?

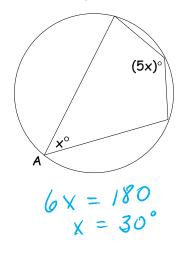
Given: CD is tangent to ⊙P
 AB is 12 units from the center of ⊙P
 AB = 18; CP = 25



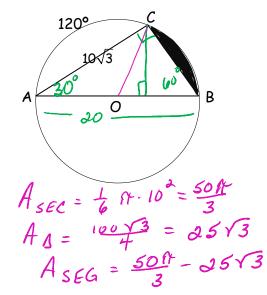
$$4ax 32^{\circ} = \frac{250}{x}$$
$$x = \frac{250}{4ax 32^{\circ}}$$
$$x = \frac{400.08}{x} \text{ ft}$$

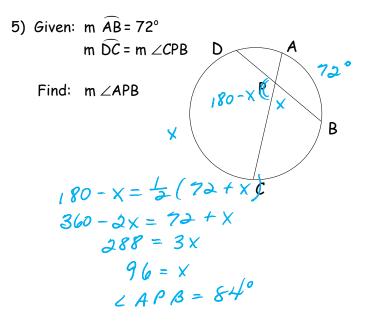

2) Find the common internal and external tangents of circles with centers 16 cm apart and radii 9 and 4.

(Note: This can be done with coordinates too)


3) Determine the radius of \odot B. Circles A, B, and C are tangent to each other.

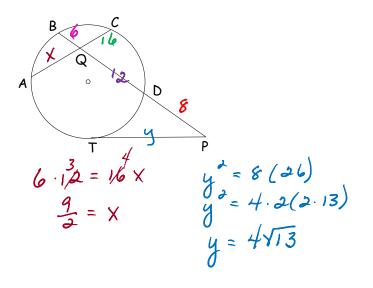
7+2x=192x=12x=6

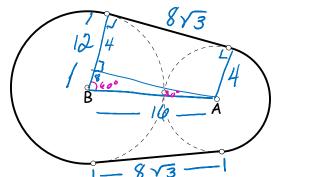

4) In the diagram, find $m \angle A$.



- 6) In ⊙O,
- a) find the length of the altitude to $\overline{\text{AB}}$, a diameter.

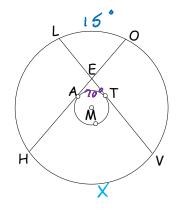
513


b) find the area of the shaded segment.(Chapter 11)

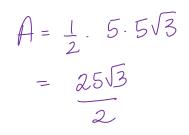


7) Given: PT is tangent to the circle. BQ = 6, CQ = 16, DQ = 12, DP = 8

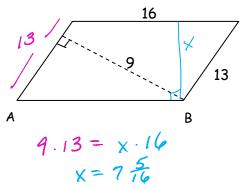
Find: AQ and PT (exact answers)


8) Circles A and B are externally tangent and a belt is wrapped tightly around them. ⊙A has a diameter of 8 and ⊙B has a diameter of 24. Find the exact length of the belt.

OB: Usc = C OA: usc = C $\frac{2}{3} \cdot 2H \cdot 12 \qquad \frac{1}{3} \cdot 2H \cdot 4$ $\frac{1}{3} \cdot 2H \cdot 4$ $\frac{8H}{3}$ Length = $16\sqrt{3} + \frac{56H}{3}$

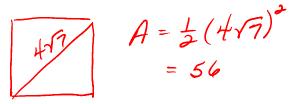

9) Given: Two circles are concentric with center M \overline{LV} and \overline{OH} are tangent to smaller circle $m \widehat{AT} = 70^{\circ}$, $m \widehat{LO} = 15^{\circ}$. Find $m \widehat{HV}$.

2AET= 180-70=110° $110^{\circ} = \frac{1}{2}(15 + x)$ 220 = 15 + X $205^\circ = X$

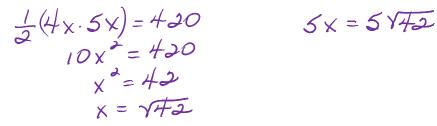


<u>Chapter 11</u>

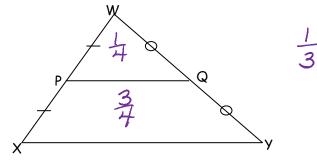
1) Find the area of a triangle with side lengths of 10, 5, and $5\sqrt{3}$.

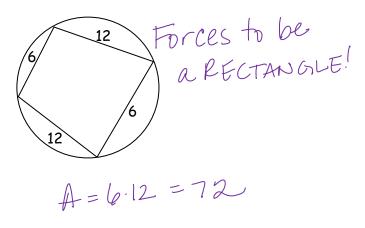


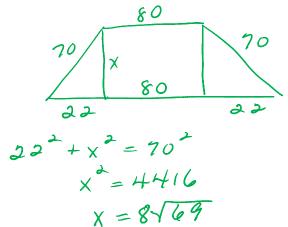
2) In the parallelogram below, find the height to \overline{AB} .



3) If a square has a diagonal of $4\sqrt{7}$, find its area.


 $Kight \Delta!$


4) The ratio of the diagonals of a kite is 4:5. If the area of the kite is 420, find the longer diagonal.


5) Find the ratio of the areas of ΔWPQ and Trap PQYX

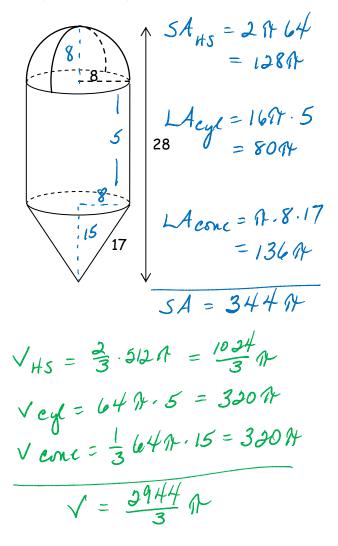
6) Find the EXACT area of the quadrilateral.

 An isosceles trapezoid has lengths 70, 80, 70, 124. Find the altitude.

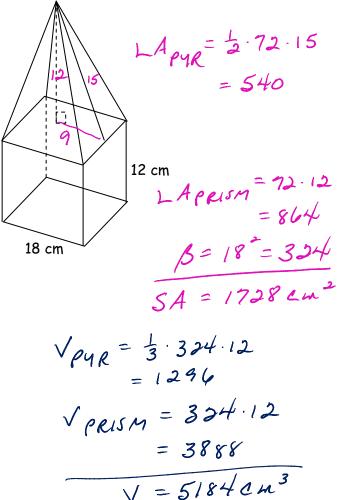
Chapter 12

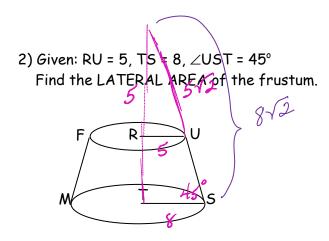
- 1) Find the Total Surface Area and Volume for the following solids:
- a) Right Isosceles Trapezoidal Prism

$$P_{BASE} = 34 \implies 1.4 = 34 \cdot 7 = 238$$


$$JB = 2(\frac{1}{2})(3\sqrt{3})22 = 66\sqrt{3}$$

$$SA = 238 + 66\sqrt{3}$$


$$V = 33\sqrt{3} \cdot 7$$


$$= 231\sqrt{3}$$

b) Hemisphere on a cylinder on a cone.

c) Regular square pyramid with a rectangular prism with slant height 15 cm

$$LA_{WC} = N \cdot 8 \cdot 8 \sqrt{2} = 64 N \sqrt{2}$$
$$LA_{TC} = N \cdot 5 \cdot 5 \sqrt{2} = 25 N \sqrt{2}$$
$$LA_{FRNSTUM} = 39 R \sqrt{2}$$

Chapter 13

1) The point (x, 6) is equidistant from the points (3, 8) and (-5, -2). Find the missing coordinate.

$$\sqrt{(X-3)^{2} + (6-8)^{2}} = \sqrt{(X+5)^{2} + (6+2)^{2}}$$

$$x^{2} - 6x + 9 + 4 = x^{2} + 10x + 25 + 64$$

$$-76 = 16x$$

$$x = -4.75$$

2) Write the equation of a line that passes through (3, -2) and (7, 1).

$$m = \frac{1+2}{7-3} = \frac{3}{4} \qquad y+2 = \frac{3}{4}(x-3)$$

or $y-1 = \frac{3}{4}(x-7)$
or $y = \frac{3}{4}x - \frac{17}{4}$

3) Write the equation of a line in slope-intercept form that has a slope of -2 and passes through the point (-4, 5). u - 5 = -2(x + 4)

$$y - 3 = -2(x + 4)$$

 $y = -2x - 3$

4) Write an equation of a line that is perpendicular to the line with an equation of 3x + 2y = 6 and passes through the point (-2, 4). $m = -\frac{3}{2}$

$$y - 4 = \frac{2}{3}(x + 2)$$

or $y = \frac{2}{3}x + \frac{16}{3}$

5) Write the equation of the circle whose endpoints of a diameter are (-2, 4) and (4, -2).

$$M(1,1) \qquad (X-1)^{2} + (y-1)^{2} = r^{2}$$

$$(-2-1)^{2} + (4-1)^{2} = r^{2}$$

$$q + q = r^{2}$$

$$(X-1)^{2} + (y-1)^{2} = 18$$

6) Find the center and radius of the circle: $4x^2 + 4y^2 - 12x + 16y - 48 = 0$.

$$\begin{array}{c} x^{2} + y^{2} - 3x + 4y - 12 = 0 \\ x^{2} - 3x + \frac{9}{4} + y^{2} + 4y + 4y = 12 + \frac{9}{4} + 4 \\ (x - \frac{3}{2})^{2} + (y + 2)^{2} = \frac{73}{4} \\ C(\frac{3}{2}, -2) \quad r = \frac{\sqrt{73}}{2} \end{array}$$

7) Find the intersection point(s) of the circle $x^2 + (y + 2)^2 = 26$ and the line -x + y = 4.

$$x^{2} + (4 + x + 2)^{2} = 26$$

$$x^{2} + (x + 6)^{2} = 26$$

$$x^{2} + x^{2} + 12x + 36 = 26$$

$$2x^{2} + 12x + 10 = 0$$

$$2(x^{2} + 6x + 5) = 0$$

$$2(x + 5)(x + 1) = 0$$

$$y = 4 + x$$

$$x = -1$$

$$(-5, -1)$$

$$(-1, 3)$$