

If $a y-c x+b y=d x+f y+k x$ find the ratio of x to y.

If ay $-c x+b y=d x+f y+k x$
find the ratio of x to y.

$$
a y+b y-f y=d x+c x+k x
$$

Solve for y .

$$
\frac{y(a+b-f)}{y(d+c+k)}=\frac{x(d+c+k)}{y(d+c+k)}
$$

$$
\frac{x}{y}=\frac{a+b-f}{d+c+k}
$$

The centers of two circles with radii of 1 and 10 are 15 units apart. Find the length of the common external tangent.

The centers of two circles with radii of 1 and 10 are 15 units apart. Find the length of the common external tangent.

-

What is the measure of angle A?

$$
\begin{aligned}
\cos ^{-1}(\cos A) & =\cos ^{-1}\left(\frac{4}{7}\right) \\
A & =\cos ^{-1}\left(\frac{4}{7}\right) \\
A & =55.2^{9}
\end{aligned}
$$

The centers of two circles with radii 9 cm and 3 cm are 16 cm apart. Find the length of the common internal tangent.

If $\cos A=\frac{4}{7}$

What is the $\tan \mathrm{A}=$?

If $\cos A=\frac{4}{7}$

What is the $\tan \mathrm{A}=$?

What is the measure of angle A?

Calculate the mean proportional(s) between 32 and 48.

Ms. Holton is running around Hinsdale and doesn't know where she is going! First she bikes 5 miles South, then 3 miles East, 2 miles North, 1 mile West, then finally 4 miles South. How far is she from the where she started?

Ms. Holton is running around Hinsdale and doesn't know where she is going! First she bikes 5 miles South, then 3 miles East, 2 miles North, 1 mile West, then finally 4 miles South. How far is she from the where she started?

$$
2^{2}+7^{2}=x_{2}^{2}
$$

$4+49=x^{2}$

Solve for x :

12
A. $6 \sqrt{2}$
B. $4 \sqrt{2}$
C. $4 \sqrt{3}$
D. $2 \sqrt{10}$

Solve for y :

B. $4 \sqrt{2}$
C. $4 \sqrt{3}$
D. $2 \sqrt{10}$
B. $4 \sqrt{2}$
C. $4 \sqrt{3}$
D. $2 \sqrt{10}$

A. $6 \sqrt{2}$
$x^{2}=4.8$
$x^{2}=32$
$x=\sqrt{16 \cdot 2}$
$x=4 \sqrt{2}$

Solve for x :

Solve for x :
A. 6
B. -8
C. 4
D. $4,-8$

12

$$
(x+2)^{2}=3.12
$$

$$
x^{2}+4 x+4=36
$$

$$
x^{2}+4 x-32=0
$$

$$
(x+8)(x-4)=0
$$

$$
x=-8,4
$$

Solve for x and y :

Find the distance between $(-2,9)$ and $(3,-14)$.

Find the distance between $(-2,9)$ and ($3,-14$).
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(3+2)^{2}+(9+14)^{2}}$
$d=\sqrt{(5)^{2}+(23)^{2}}$
$d=\sqrt{554}$

。
Find z

Find missing w, y and z.

Find missing w, y and z .

