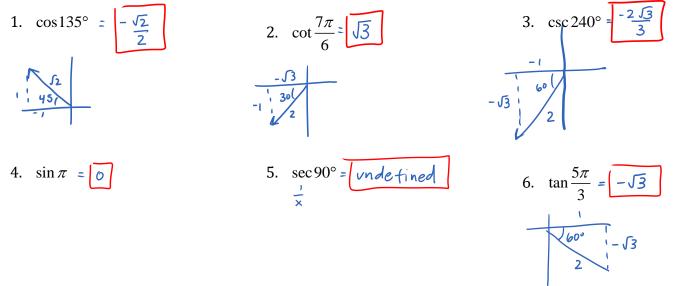
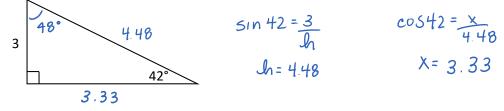
Name: Key Period:

PART I: 4.1-4.3, 5.5, 5.6 (Right Angle Trig, Unit Circle, Law of Sines & Cosines)

(#1-6) Without using a calculator, find the exact values of each:



7. Solve for the missing angles and sides of the triangle. **



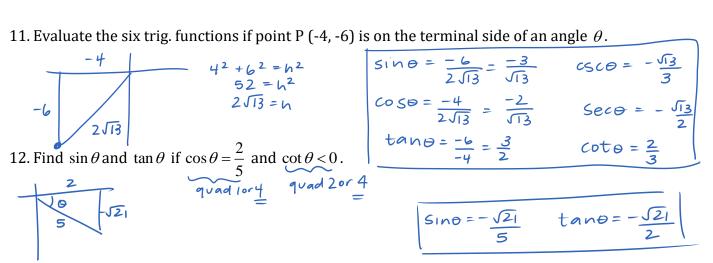
8. Convert 37 degrees to radians.** $37^{\circ} \times \frac{\pi}{180^{\circ}} = \begin{bmatrix} 37\pi}{180} \end{bmatrix}$ 9. Convert 2 radians to degrees.**

$$2 \times \frac{190^{\circ}}{\pi L} = \frac{360^{\circ}}{\pi L} \text{ or } 114.59^{\circ}$$

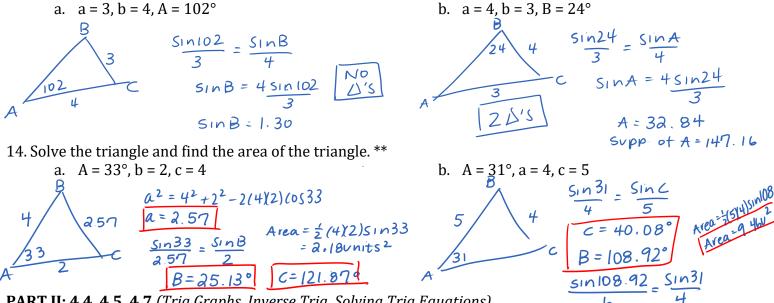
10. Assume the angle θ is an acute angle. Find the other five trig. functions if:

a.
$$\cos \theta = \frac{5}{9}$$

b. $\csc \theta = \frac{13}{5}$
b. $\csc \theta = \frac{13}{5}$
 $\int 2\sqrt{14}$
 $\int 3\sqrt{5}$
 $\int 13\sqrt{5}$
 $\int 5$
 $\int 13\sqrt{5}$
 $\int 13\sqrt{5}$
 $\int 5$
 $\int 13\sqrt{5}$
 $\int 13\sqrt{5}$
 $\int 13\sqrt{5}$
 $\int 13\sqrt{5}$
 $\int 13\sqrt{5}$
 $\int 12\sqrt{5}$
 \int

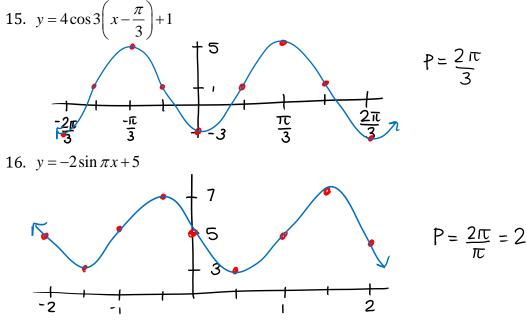


13. Determine if the triangle has 0, 1, or 2 possible triangles. **



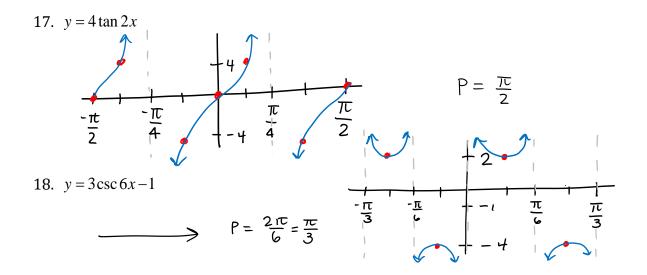
PART II: 4.4, 4.5, 4.7 (Trig Graphs, Inverse Trig, Solving Trig Equations)

(#15-18) Sketch two periods of the graph of the trig function. Make sure to include your scale and critical values on each axis.

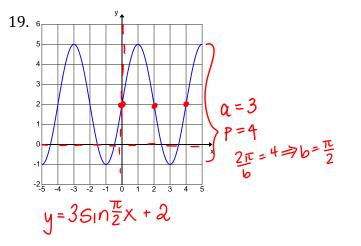


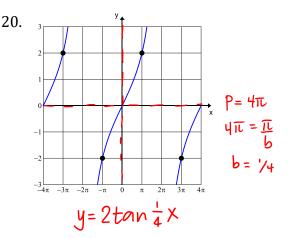
$$\Delta \# 2$$

 $2C = 139.92^{\circ}$
 $2B = 9.08^{\circ}$
 $b = 1.23$

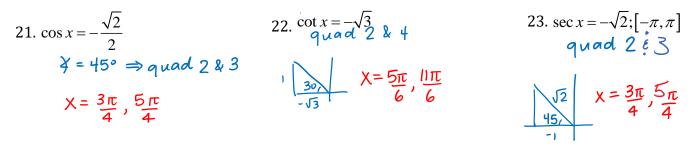


(#19-20) Write the equation of the each graph shown below. (4 points each)





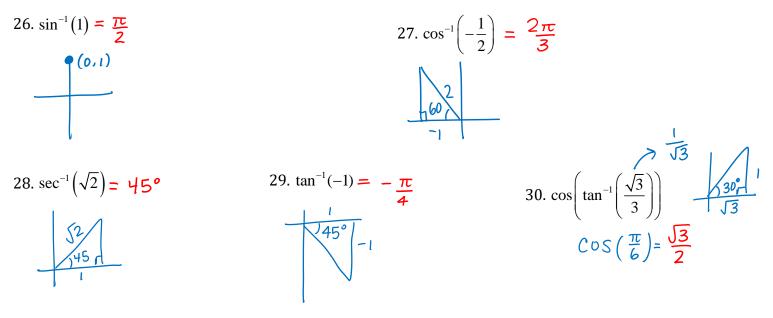
(#21-25) Solve the trig equation over the interval $[0, 2\pi]$.



24.
$$\sin x = 0.73^{**}$$

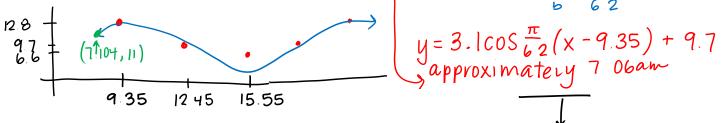
 $quad 1 \& 2$
 $x = .92, 2.32$
25. $\sec x = -1.92^{**}$
 $quad 2 \& 3$
 $CoS^{-1}('/-1.92)$
 $x = 2.12, 4.16$

(#26-30) evaluate the inverse trig function. Reminder: inverse trig functions have restricted domains!

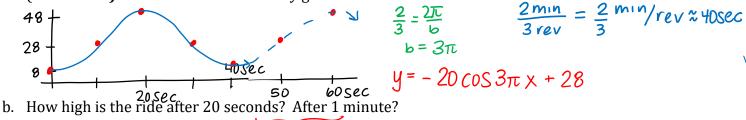


31. Write the equation of a sine graph that has an amplitude of 4, a period of length 3π , a phase shift of

- $\frac{\pi}{4} \text{ to the left, and a vertical shift down 2. } 42$ a = 4 $3\pi = 2\pi$ $b = \frac{2\pi}{5}$ $b = \frac{2}{3}$ 4
- 32. At Hilton Head Island on June 10, high tide measured 12.8 feet on a pier at 9:21 am. The next low tide measured 6.6 feet at 3:33 pm. Write a sinusoidal equation modeling the behavior of the tide. What is the first time on June 10 that the tide measures 11 feet? ** $P = \frac{12}{12} + \frac{2\pi}{5} = \frac{\pi}{5}$



- 33. The Ferris wheel at a local amusement park has a diameter of 40 feet and reaches a maximum height of 48 feet above the ground. One ride is three revolutions, which takes 2 minutes to complete.**
 - a. Draw a sketch of the graph and create an equation to model the height of a rider in terms of time (in seconds) on the Ferris wheel if they get on the ride at the bottom.



48 feet

c. At what time(s) during the full ride does the rider reach a height of 25 feet? $.52 \cdot .52 \cdot .82 \cdot 1.18 \cdot 1.48 \cdot 1.85$

9sec, 312sec, 49 2sec, 70.8sec, 88 8sec, 111sec

PART III: Chapter 5 (Trig Identities)

(#34-37) Simplify using trig identities:

34. $\cos^3 x + \cos x \sin^2 x$ $\cos x (\cos^2 x + \sin^2 x)$ = 1 $\cos x$

$$36. \frac{1}{\sin^2 x} + \frac{\sec^2 x}{\tan^2 x}$$
$$\frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} \cdot \frac{\cos^2 x}{\sin^2 x}$$
$$\frac{2}{\sin^2 x} = 2\csc^2 x$$

(#38-41) Find all solutions in the interval $[0,2\pi)$.

$$38. \sqrt{2} \cot x \sin x - \cot x = 0$$

$$Cot \times (\sqrt{2} \sin x - 1) = 0$$

Cotx = 0
 Sinx =
$$\frac{1}{\sqrt{2}}$$

 X = $\frac{\pi}{2}, \frac{3\pi}{2}$
 X = $\frac{\pi}{4}, \frac{3\pi}{4}$

40.
$$\sin 2x - 2\sin x = 0$$

 $2\sin x \cos x - 2\sin x = 0$
 $2\sin x \cos x - 2\sin x = 0$
 $2\sin x (\cos x - 1) = 0$
 $\sqrt{2} \sin x = 0$
 $\cos x = 1$
 $x = 0, \pi$ $x = 0$

$$35. \frac{\cos^{2} u + \cot^{2} u + \sin^{2} u}{\csc u}$$

$$\frac{1 + 6 + 2 u}{\sin u} = (sc^{2} u \cdot sinu)$$

$$\frac{1}{\sin u} = \frac{1}{\sin 2} \cdot snu$$

$$\frac{1}{\sin 2} = Sinx \cdot \frac{\cos x}{\sin x}$$

$$\frac{1}{\sin 2} = Sinx \cdot \frac{\cos x}{\sin x}$$

$$\frac{\cos x}{\cos x} = \frac{\sin x + \cos x}{\sin x} \cdot \frac{\cos x}{\cos x}$$

$$= \frac{\sin x + \cos x}{\sin x} \cdot \frac{\cos x}{\cos x}$$

$$Cot x$$

$$39. 3\cos t = 2\sin^{2} t$$

$$3\cos t - 2(1 - \cos^{2} t) = 0$$

$$2\cos^{2} t + 3\cos t - 2 = 0$$

.

$$(2\cos t - 1)(\cos t + 2) = 0$$

 $\int_{0}^{1} \int_{0}^{1} t = \frac{\pi}{3}, \frac{5\pi}{3}$
 $\cos t = \frac{1}{2} \int_{0}^{1} \cos t = \frac{\pi}{3}, \frac{5\pi}{3}$

41.
$$\cos 2x = \sin x$$

 $\cos 2x - \sin x = 0$
 $(1 - 2\sin^2 x) - \sin x = 0$
 $-2\sin^2 x -\sin x + 1 = 0$
 $-(2\sin^2 x + \sin x - 1) = 0$
 $-(2\sin x - 1)(\sin x + 1) = 0$
 $\sqrt{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$

(#42-45) Prove the following:

$$(#42-45) \text{ Prove the following:} \qquad x = \frac{\pi}{6}, \frac{5\pi}{6} \qquad x = \frac{3\pi}{2}$$

$$42. \cos x + \sec x = \frac{2 - \sin^2 x}{\cos x} \qquad 43.1 + \tan^2 x = \frac{1}{1 - \sin^2 x} \qquad = 8 \text{ Cec}^2 x$$

$$= \frac{1}{\cos^2 x} \qquad = 8 \text{ Cec}^2 x$$

$$= \frac{1}{\cos^2 x} \qquad = \frac{1}{\cos$$

(#46-49) Evaluate the following without a calculator, using either the Sum/Difference or Half-Angle identities.

46.
$$\sin 105^{\circ}$$

 $\sin (60 + 45)$
 $\sin 60 \cos 45 + \cos 60 \sin 45$
 $\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right)$
 $\sqrt{6} + \sqrt{2}$
 $48. \tan\left(\frac{\pi}{12}\right)$
 $48. \tan\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$
 $\tan\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$
 π
 $\tan 3 + \tan 4$
 $1 - \tan \frac{\pi}{3} \tan \frac{\pi}{4} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}}$

47.
$$\cos(-75^{\circ})$$

 $\cos(60 - 135)$
 $\cos(60)\cos(135) + \sin(60)\sin(^{1}35)$
 $(\frac{1}{2})(-\frac{52}{2}) + (\frac{5}{2})(\frac{52}{2})$
49. $\sin(\frac{5\pi}{8})$
 $\sin(\frac{5\pi}{4}) = + 1 - \cos\frac{5\pi}{4}$
 2
 $= \sqrt{\frac{1 + 52}{2}} = \sqrt{2 + 52}$