Q1 Cumulative Review - Chapter 1 and 2

CHAPTER 1

1. KNOW THE 11 BASIC FUNCTIONS and their key features such as: even, odd, neither; boundedness; extrema; intervals of increasing, decreasing, constant; domain and range; intercepts; etc.
(\#2-8) Use the equation $f(x)=x^{4}-3 x^{3}+x-1$ to find its properties listed below.
2. Absolute maximum: $n / 9$
3. Increasing intervals: $[-.31, .36] \cup[2.20, \infty)$
4. Absolute minimum: $y=-7.32 \odot x=2.20$
5. Decreasing intervals: $(-\infty, .31] \cup[.36,2.20]$
6. Local maximum (s): $y=-.76 \bigodot x=.36$
7. Constant intervals: n/a
8. Local minimums): $y=-7.32 @ x=2.20$
9. Even/odd/neither? neither
(\#10-12) Find the domain of the following functions. **
10. $f(x)=x+\sqrt{x-4}$

$$
\begin{aligned}
x-4 & \geq 0 \\
x & \geq 4
\end{aligned}
$$

$$
[4, \infty)
$$

11. $f(x)=x^{2}-3 x+4$
\mathbb{R}
12. $\begin{aligned} & f(x)=\frac{1}{x \sqrt{4-x^{2}}} \\ & \downarrow \quad \downarrow \\ & x \neq 0 \quad 4-x^{2}>0\end{aligned}$
$(2+x)(2-x)>0$

(\#13-15) Use the equation $f(x)=-3 x^{2}-2 \%^{*} \rrbracket$

13. Is the function bounded/ounded above/bounded below/neither? Circle one.
14. Is the function even/odd/neither? Circle one.
15. Describe the transformations taking place (in order). $y=x^{2}$ vert.
(1) reflect over x-axis
(2) stretch bato 3
(3) $\downarrow 2$
(\#16-19) Use the functions to evaluate the following: $f(x)=\sqrt{x^{2}-9}, g(x)=2 x+3^{* *}$
16. $f+g=\sqrt{x^{2}-9}+2 x+3$
17. $f-g \sqrt{x^{2}-9}-2 x-3$
18. $f(g(x))=\sqrt{(2 x+3)^{2}-9}$
19. $g(f(x))=2\left(\sqrt{x^{2}-9}\right)+3$

$$
\begin{aligned}
& =\sqrt{4 x^{2}+12 x+9-9} \\
& =\sqrt{4 x^{2}+12 x}
\end{aligned}
$$

20. Confirm the following two functions are inverses of one another: $f(x)=\frac{1}{2} x^{3}+4, g(x)=\sqrt[3]{2 x-8} * *$

$$
f(g(x))=\frac{1}{2}(\sqrt[3]{2 x-8})^{3}+4=\frac{1}{2}(2 x-8)+4=x-4+4^{2}=x
$$

$$
g(f(x))=\sqrt[3]{2\left(\frac{1}{2} x^{3}+4\right)-8}=\sqrt[3]{x^{3}+8-8}=\sqrt[3]{x^{3}}=x
$$

21. Find the inverse of $f(x)=\sqrt{x-1}+4$ and state the domain of $f^{-1}(x) .^{* *}$

$$
\begin{array}{ll}
\text { range: }[4, \infty) & \begin{array}{l}
x=\sqrt{y-1}+4 \\
\\
x-4=\sqrt{y-1}
\end{array}
\end{array}
$$

$$
f^{-1}(x)=x^{2}-8 x+17
$$

$$
d:[4, \infty)
$$

(\#22-23) Use the function $h(x)=-3|x-2|+7$
22. List the parent functions and the transformations (in order) taking place. **
Vertical
(1) fop over x-axis
(2) stretch bafo 3 (3) $\uparrow 7$
23. Graph $h(x)$. Plot at least 4 accurate points. **

24. Graph the following piecewise function:

CHAPTER 2

25. Find the vertex and axis of symmetry:

$$
\begin{aligned}
y= & 3 x^{2}+12 x-1^{* *} \\
x & =\frac{-12}{2(3)}=\begin{array}{l}
x=-2 \\
\text { vertex: }(-2,-13)
\end{array}
\end{aligned}
$$

$$
3(-2)^{2}+12(-2)-1
$$

$$
3(4)-24-1
$$

27. Write an equation of the line passing through $(-2,7)$ and $(2,-1)$.**

$$
\begin{array}{ll}
m=\frac{-1-7}{2+2}=\frac{-8}{4}=-2 & \begin{array}{ll}
y-7 & =-2(x+2) \\
& O R \\
y+1 & =-2(x-2) \\
& O R
\end{array}
\end{array}
$$

$$
y=-2 x+3
$$

$$
x \rightarrow-\infty
$$

29. Factor completely. Then write a linear factorization of the function (factored form): $g(x)=x^{5}-3 x^{4}-5 x^{3}+5 x^{2}-6 x+8 \Rightarrow g(x)=(x+2)(x-1)(x-4)(x+i)(x-i)$ zeros from call: $-2,1,4$
30. Write a polynomial of minimum degree in factored form that has zeros of 4 and $1+2$ i. **

$$
\text { factored from: } f(x)=(x-4)\{x-(1+2 i))(x-(1-2 i))
$$

$$
\begin{aligned}
& \begin{array}{rccccc|c}
-2 & 1 & -3 & -5 & 5 & -6 & 8 \\
\downarrow & -2 & 10 & -10 & 10 & -8 \\
\hline 1 & -5 & 5 & -5 & 4 & 0
\end{array} \\
& x^{2}+1=0 \\
& x^{2}=-1 \\
& x= \pm i
\end{aligned}
$$

31. Graph the function. Include any asymptotes (vertical, horizontal, slant), removable discontinuities, x and y-intercepts, and end behavior. $g(x)=\frac{3 x^{2}+13 x-10}{x^{2}-25} * * \Rightarrow g(x)=\frac{(3 x-2)(x+5)}{(x-5)(x+5)}$

V.A: $x=5$	$\lim _{x \rightarrow 5^{-}} g(x)=-\infty$
H.A. $: y=3$	$\lim _{x \rightarrow 5^{+}}(x)=\infty$
S.A.: $n / 9$	
R.D.: $(-5,17 / 10)$	$\lim _{x \rightarrow-\infty} g(x)=3$
x-int: $(2 / 3,0)$	$\lim _{x \rightarrow \infty} g(x)=3$

32. Solve for x . Check for extraneous solutions. $\frac{x}{x-2}+\frac{1}{x-4}=\frac{2}{x^{2}-6 x+8} * *$ $(x-4)(x-2)$

$$
\begin{gathered}
x(x-4)+1(x-2)=2 \\
x^{2}-4 x+x-2-2=0 \\
x^{2}-3 x-4=0
\end{gathered} \quad 7 \quad \begin{gathered}
(x-4)(x+1)=0 \\
x=x+-1
\end{gathered}
$$

33. Solve the inequality. Create a sign chart! $\frac{(x-3)|x+4|}{\sqrt{x+1}}>0^{* *}$

34. Solve the inequality using your graphing calculator: $-x^{4}+3 x^{3}-2 x^{2}+x-1<0$

$$
(-\infty, 1) \cup(2.21, \infty)
$$

35. Using a pair of scissors, you cut congruent squares off of the four corners of an 8.5 " by 11 " piece of card stock. Once the squares are cut off, you fold up the sides to form an open box (a box without a top).
a. If you want the box to have a volume of at least 16 cubic inches, what size squares could have been cut from the cardstock?

$$
16 \leq x(8.5-2 x)(10-2 x)
$$

$[.19,3.66]$
b. If you want the box to have a volume no more than 16 cubic inches, what size squares could have been cut from the cardstock?

$$
16 \geq x(8.5-2 x)(10-2 x)
$$

