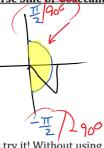
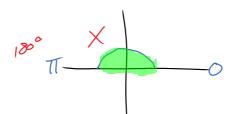

7:35 PM

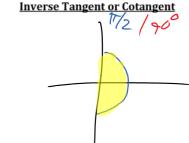
Warm Up! Evaluate without a calculator:

a. cos 45°

Evaluating Inverse Trig Functions.


Think about it! Find an angle (in degrees) whose sine value is 1/2.

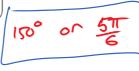

Rudians 51, VX = -

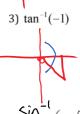

So that we only have one unique angle each time we evaluate an inverse trig function, we restrict the domain:

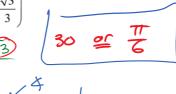
Inverse Cosine or Secant

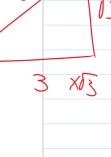
Inverse Sine or Cosecant

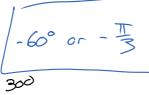
Let's try it! Without using your calculator, evaluate the following. (Draw a picture if needed.)

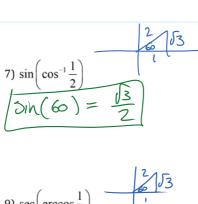


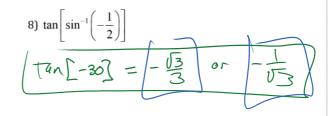


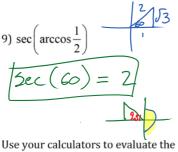


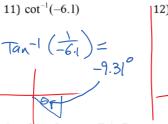




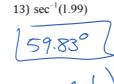


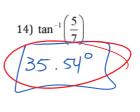





Cot x = -6.1

10)
$$\csc(\tan^{-1} l)$$


$$CSC(45) = \sqrt{2}$$


$$SECX = 1.99$$

Use your calculators to evaluate the following. Round your answer to the nearest hundredth.

$$\frac{2}{48.19}$$



What happens when we graph an inverse function?

- (1.47) - (1.47)

Let's examine the graph $y = \cos x$ and $y = \cos^{-1} x$.

Domain: Range: Domain: Range