What are we learning in the Right Triangles Chapter 9?
**Please indicate how you feel about the required topics in this unit. **

Objective	Example	Answer	Rating
Simplify radicals	Simplify the following values: a. $5 \sqrt{1134}$ b. $2 \sqrt{75}-3 \sqrt{147}$ c. $(5-3 \sqrt{2})^{2}$ d. $\frac{5}{\sqrt{27}}$	a. $45 \sqrt{14}$ b. $-11 \sqrt{3}$ c. $43-30 \sqrt{2}$ d. $\frac{5 \sqrt{3}}{9}$	
Solve a quadratic equation by various methods	Solve for x : a. $8 x^{2}+2 x-3=0$ b. $5 x^{2}-6 x-2=0$ c. $3 x^{2}-4=104$	a. $\quad x=\frac{1}{2}, \frac{-3}{4}$ b. $x=\frac{3 \pm \sqrt{19}}{5}$ c. $x= \pm 6$	
Apply Altitude on Hypotenuse Theorems	a. Find the measure of CR if $\mathrm{RU}=5$ and $\mathrm{RD}=10$. b. Find the measure of UD if $\mathrm{UR}=10$ and $\mathrm{CR}=25$. c. Find the measure of CU if $R U=2$ and $C D=2 \sqrt{6}$.	a. $\quad C R=20$ b. $\mathrm{UD}=5 \sqrt{6}$ c. $\mathrm{CU}=4$	() $)^{(2)}$
Apply the Pythagorean Theorem, families of right triangles, and the reduced triangle principle to find missing sides of a triangle	Calculate the perimeter of the interior quadrilateral formed from connecting points on the rectangle:	$\sqrt{61}+17+2 \sqrt{53}+2 \sqrt{10}$	() ${ }^{\text {P }} \times$

Use the distance formula to find the distance between two points	a. A triangle has points $\mathrm{A}(-3,7), \mathrm{B}(4,5)$ and $\mathrm{C}(1,-2)$. Find the length of the median from B to $\overline{A C}$. b. The distance between $(-2,4)$ and $(x, 16)$ is $4 \sqrt{13}$. What is the x value?	a. $\frac{5}{2} \sqrt{5}$ b. $x=6$ or -10	(-) $\left.)^{(}\right)$
Apply rules for $30^{\circ}-60^{\circ}-90^{\circ}$ triangles	Calculate the span for a regular hexagon if each side length is $8 \sqrt{3}$.	24	
Apply rules for $45^{\circ}-45^{\circ}-90^{\circ}$ triangles	Calculate the perimeter of the isosceles triangle below:	$52+10 \sqrt{2}$	
Apply the Pythagorean Theorem in three dimensions	Given a square pyramid with slant height of 40 and lateral edge of 41 , what is the length of the edge of the base? What is the length of the altitude?	$\begin{gathered} \text { Base edge }=18 \\ \text { Altitude }=\sqrt{1519} \end{gathered}$	

