What are we learning in the Algebra Concepts Chapter 13?
**Please indicate how you feel about the required topics in this unit. **

Objective	Example	Answer	Rating
Interpret and apply any of the vocabulary	x-intercept $\bullet y$-intercept \bullet slope \bullet pe altitude \bullet point slope form \bullet standar vertical line \bullet horizontal line \bullet	dicular • parallel • median • orm • slope intercept form • defined slope \bullet distance	$\bigcirc \bigcirc \cdot{ }^{-} \times$
Graph a line from any form	a. Graph $y=-\frac{5}{2} x+7$ b. Graph $5 x-6 y=-60$ c. Graph $y-4=\frac{1}{3}(x+2)$		$\bigcirc \bigcirc \geqslant$
Write an equation of a line in any form	a. Write the equation of the line through $(-2,3)$ and $(8,-5)$. b. Write the equation of the line perpendicular to $5 x-6 y=-60$ and through $(-4,17)$. c. Write the equation of the line parallel to $y-4=\frac{1}{3}(x+2)$ and through the x -intercept of $5 x-6 y=-60$.	a. $y+5=-\frac{4}{5}(x-8)$ or $y-3=-\frac{4}{5}(x+2)$ b. $y-17=-\frac{6}{5}(x+4)$ c. $y-0=\frac{1}{3}(x+12)$	
Solve a system of equations that has multiple solutions	Solve for x and y : $\left\{\begin{array}{c} (x-3)^{2}+(y+5)^{2}=49 \\ y=3 x-4 \end{array}\right.$	$\begin{aligned} & \left(\frac{\sqrt{390}}{10}, \frac{3 \sqrt{390}}{10}-4\right) \text { and } \\ & \left(-\frac{\sqrt{390}}{10},-\frac{3 \sqrt{390}}{10}-4\right) \end{aligned}$	() ${ }^{\text {P }} \times$
Write an equation of a median in a triangle	Triangle ABC has coordinates $\mathrm{A}(-1,-3)$, $B(2,10)$, and $C(5,4)$. Write an equation for the median from C .	$\begin{aligned} & y-\frac{7}{2}=\frac{1}{9}\left(x-\frac{1}{2}\right) \text { or } \\ & y-4=\frac{1}{9}(x-5) \end{aligned}$	$\bigcirc \bigcirc \geqslant$

Find the length of an altitude of a triangle	Triangle ABC has coordinates $\mathrm{A}(1,-8)$, $B(2,10)$, and $C(5,4)$. Find the length of the altitude from B.	$\frac{3 \sqrt{10}}{2}$	
Compute the distance between two lines	Find the distance between $y=\frac{1}{3} x+4$ and $y=\frac{1}{3} x+6$.	$\frac{3 \sqrt{10}}{5}$	$\left.\bigcirc \bigcirc{ }^{(}\right)$
Complete the square to write the equation of a circle in standard form	Write the standard form equation of the circle $x^{2}+y^{2}-16 x-6 y=62$ and identify the center and radius.	$(x-8)^{2}+(y-3)^{2}=135$ Center: $(8,3)$ $\text { Radius }=3 \sqrt{15}$	$\bigcirc \bigcirc{ }^{-} \times$
Find the length of the common internal or external tangents	Find the length of the common external tangent between the two circles $\begin{aligned} & (x-4)^{2}+(y+3)^{2}=36 \text { and } \\ & (x+1)^{2}+(y-5)^{2}=9 . \end{aligned}$		$\bigcirc \bigcirc \bigcirc$

