Name \qquad

1. Given: TRAP is an isosceles trapezoid with bases $\overline{R A}$ and $\overline{T P}$
M is the midpoint of $\overline{T R}$

$$
\angle 1 \cong \angle 2
$$

Prove: $S P \cdot R M=T Q \cdot O P$

1. Trap.
2. Given
3. M is midpt of of $\overline{T R}$
4. $\overline{R M} \cong \overline{M T}$
5. $\Varangle 1 \cong \Varangle 2$
6. $4 T \cong \Varangle P$
7. $\triangle T M Q \sim \triangle P O S$
8. $\frac{M T}{O P}=\frac{T Q}{S P}$
9. OP .TQ $=S P \cdot M T$
10. MEPT
11. Substitution
12. OP .TQ $=S P \cdot M R$

2 Given
3. Def. of midpt
4. Given
5. If is os trap \rightarrow Lower base $\Delta \cdot s \cong$
6. $A A \sim$
7. CSSEP
2. A radio antenna that is 100 m tall casts an $80-\mathrm{m}$ shadow. At the same time, a nearby telephone pole casts a $16-\mathrm{m}$ shadow. Find the height of the telephone pole.

$$
\begin{aligned}
\frac{100}{x} & =\frac{80}{16} \\
80 x & =1600 \\
x & =20
\end{aligned}
$$

3. Find the $2^{\text {nd }}$ proportional if the $1^{\text {st }}, 3^{\text {rd }}$, and $4^{\text {th }}$ are 6,8 , and 9 .

$$
\frac{6}{x}=\frac{8}{9} \quad 8 x=54
$$

$$
\begin{aligned}
& \text { 4. Find the geometric and arithmetic mean between } 3 \text { and } 9 \text {. } \\
& \frac{3}{x}=\frac{x}{9} \quad x^{2}=27 \\
& \text { A.M. } \frac{3+9}{2}=6 \sqrt{3}
\end{aligned}
$$

5. 8 is the mean proportional between 3 and what number?

$$
\begin{aligned}
& \frac{3}{8}=\frac{8}{x} \\
& 3 x=64 \\
& x=\frac{64}{3}
\end{aligned}
$$

6. If $m x-n y=p y+q x$, find the ratio of x to y.

$$
\begin{aligned}
& m x-q x=p y+n y \\
& \frac{x(m-q)}{y(m-q)}=\frac{y(p+n)}{y(m-q)}
\end{aligned}
$$

$$
\frac{x}{y}=\frac{p+n}{m-q}
$$

7. If $\frac{8}{2 x-3 y}=\frac{5}{x+2 y}$, find the ratio of x to y.

$$
8(x+2 y)=5(2 x-3 y)
$$

$$
8 x+16 y=10 x-15 y
$$

$$
\frac{31 y}{2 y}=\frac{2 x}{2 y} \quad \frac{x}{y}=\frac{31}{2}
$$

8. A scale model of the Titanic is $18 \frac{1}{2}$ inches long. The scale is $1: 570$. To the nearest foot, how long was the Titanic?

$$
\begin{align*}
\frac{18.5}{x} & =\frac{1}{570} \\
x & =10545
\end{align*}
$$

9. Given: WINT is a parallelogram $\angle 1 \cong \angle 2$

Prove: $I E \cdot T O=T R \cdot I M$

1. WINT is a \square
2. $41 \cong \Varangle 2$
3. $\Varangle I \cong \nsubseteq \top$
$4 \triangle E M M \sim \triangle T R O$
4. $\frac{I E}{T R}=\frac{I M}{T O}$
5. $I E \cdot T O=T R \cdot M M$

1 Given
2. Given
3. If $\square \rightarrow$ opp. $\Delta \cdot S \cong$
4. AA ~
5. CSSTP
6. MEPT
10. Answer Always, Sometimes, or Never:
a. If 2 triangles are similar, then they are congruent.

b. If 2 triangles are congruent, then they are similar. \qquad
c. Two squares are similar to each other. A
d. Two rhomb are similar to each other. 5
e. If two quadrilaterals are similar, the ratio of their perimeters is equal to the ratio of their corresponding sides. A

