\#

\#2 a. 30-60-90
b. $3,4,5$
c. $5,12,13$
d. $8,15,17$
e. $45,45,90$
\#3
a. 30
d. 15
g. $5 \sqrt{3}, 10 \sqrt{3}$ j. $4 \sqrt{2},+\sqrt{2}$
h. $25 / 2$
b. $5 \sqrt{3}, 5$
e. $4 \sqrt{5}$
c. 7
f. 9
i. 26
\#4 If $A E=6$ and $B E=8$
what is the perimeter of the rhombus

$$
\begin{aligned}
& (3,4,5) \times 2 \\
& P=4(10)=40
\end{aligned}
$$

\#14 Given. $P R=20$

$$
P S=25
$$

Find the perimeter of base

$$
P=30(4)=120
$$

"Regular square pyr."

\#15 find $A G$ to the nearest tenth if $D C=12, C G=7, A D=4$

$$
\left.\begin{array}{rlr}
4^{2}+12^{2}=x^{2} & (4 \sqrt{10})^{2}+7^{2}=y^{2} \\
1^{2}+3^{2}=x^{2} & 16 \cdot 10+49=y^{2} \\
10 & =x^{2} & 160+49=y^{2} \\
4 \sqrt{10} & =x & 209
\end{array}\right)=y^{2} .
$$

H
\#23 Iwo Boats leave the harBor at $9 \mathrm{a} . \mathrm{m}$. Boat A sails north at $20 \mathrm{~km} / \mathrm{hr}$ Boat B sails west at $15 \mathrm{~km} / \mathrm{hr}$. How far a part are the two boats at noon.

$$
\begin{aligned}
60^{2}+45^{2} & =x^{2} \\
4^{2}+3^{2} & =x^{2} \\
5 & =x \\
5(15) & =75 \mathrm{~km}
\end{aligned}
$$

\#24 a. Find x
b. Find y

$$
\begin{aligned}
10^{2} & =8(8+x) \\
100 & =64+8 x \\
36 & =8 x \\
4.5 & =x
\end{aligned}
$$

$$
\begin{aligned}
6^{2}= & y(y+9) \\
36= & y^{2}+9 y \\
0= & y^{2}+9 y-36 \\
0= & (y-3)(y+12) \\
& y=3,-12
\end{aligned}
$$

\#26

(20)

$$
x=20-8=12 f t
$$

\#27

$$
\begin{aligned}
& 45^{2}+24^{2}=x^{2} \\
& 15^{2}+8^{2}=x^{2} \\
& 17=x \\
& \times 3 \\
& 51 \text { paces }
\end{aligned}
$$

\#33 The altitude to the hypotenuse of a right Δ divides the hypotenuse in a ratio $4: 1$. What is the ratio of the legs of the triangle

