p. 320: 3, 6, 12-15, 18, 20, 21, 24, 26
\#3 Given: $\overline{A C} \cong \overline{A E}$

$$
\triangle C B D \cong \triangle E F D
$$

Prove: $\Varangle B D C \cong \angle F D E$

1. $\overline{A C} \cong \overline{A E}$
2. Given
3. $\Varangle C B D \cong \Varangle E F D$
4. Given
5. $\Varangle C \cong \Varangle E$
6. If $\Delta x \rightarrow \Delta$
7. $\Varangle B D C \cong \not \approx F D E$

4 No Choice Th
\#6 The measures of the angles of a quadrilateral are $40,70,130$, find the measure of the 4 th

$$
360-40-70-130=120^{\circ}
$$

\#12 If the measure of an exterior angle of a regular polygon is 15, how many sides does the polygon have?

$$
\begin{aligned}
15 & =\frac{360}{n} \\
n & =24
\end{aligned}
$$

\# 13 If a polygon has 33 sides, what is
a. The sum of the measures of the

$$
\begin{aligned}
& 180(33-2) \\
& 180(31) \\
& 5580
\end{aligned}
$$ angles

b. The sum of the measures of the exterior K's, 360° one per vertex, of the polygon
\#14 The sum of the measures of the angles of a polygon is 1620 . Find the number of sides

$$
\begin{aligned}
1620 & =180(n-2) \\
9 & =n-2 \\
11 & =n
\end{aligned}
$$

\#15 Find the number of diagonals that can be drawn in a pentadecagon

$$
\begin{aligned}
\begin{array}{l}
\text { \# of } \\
\text { diag }
\end{array} & =\frac{15(15-3)}{2} \\
& =\frac{15(12)}{2} \\
& =90
\end{aligned}
$$

\#18
The measure of one of the angles of a right triangle is five times the measure of another angle of the triangle. What are the possible values of the measure of the second largest angle.

$$
\begin{aligned}
x+5 x & =90 \\
6 x & =90 \\
x & =15
\end{aligned}
$$

$$
\begin{aligned}
m \not \Varangle^{2} & =5(15) \\
& =75^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
5 x & =90 \\
x & =18 \\
m \times 2 & =72^{\circ}
\end{aligned}
$$

\#20 Given: $\overline{A B} \cong \overline{A C}$

$$
\begin{aligned}
& \triangle D B C \cong \triangle D C A \\
& m \Varangle A=50
\end{aligned}
$$

Find: $m \not \approx B D C$

$$
\begin{aligned}
& \triangle A B C+\angle A C B=130 \\
& \triangle A B C=\triangle A C B=65
\end{aligned}
$$

So $m \angle D=180 \quad 165=115^{\circ}$
\#21
Tell whether each statement is true Always, Sometimes, or Never
a. An equiangular triangle is isosceles A
b. The number of diagonals in a polygon is the same as the number of sides S
c. An exterior angle of a triangle is larger in measure than any angle of a triangle S
d. One of the base angles of an isosceles triangle has a measure greater than that of one of the exterior angles of the triangle
\#24 The measure of an angle of an equiangular polygon exceeds four times the measure of one of the polygon's exterior angle by 30 . What is the name of the polygon.

$$
\begin{aligned}
& \operatorname{lnt} \nleftarrow=x \\
& \operatorname{ext} \not \Varangle=180-x
\end{aligned}
$$

$$
\begin{aligned}
x & =4(180-x)+30 \\
x & =720-4 x+30 \\
5 x & =750 \\
x & =150
\end{aligned}
$$

$$
\operatorname{ext} x=30^{\circ} \quad 30=\frac{360}{n}
$$

$$
n=12 \text { DodEcagon }
$$

\#26 Show that $h=\frac{1}{2}(b+d)$

$$
\begin{aligned}
h & =b+e \quad(\text { ext x) } \\
\Varangle A F G & =h \quad(b y \text { NOCHOICE) } \\
\Varangle A F G & =\Varangle E F D \quad(b y \vee \cdot A) \\
h & =\Varangle E F D \quad \text { (transitive) } B \\
d & =h+e \text { so } e=d-h \quad \text { (ext. } \&) \\
h & =b+d-h \quad \text { (SuBstitution) } \\
+h & =\frac{b+d}{2} \\
h & =\frac{1}{2}(b+d)
\end{aligned}
$$

