Objective CHECK DEAL OR NO DEAL!
Objective 1: Graph a line from any form
a. Graph $y=-\frac{5}{2} x+7$
b. Graph $\begin{aligned} & 5 x-6 y=-60 \\ &(-12,0) \\ &(0,10)\end{aligned}$
c. Graph $y-4=\frac{1}{3}(x+2)$
d. $y=-2$

$$
m \leqslant \frac{1}{3}
$$

Objective 2: Write the equation of a line

$$
m=\frac{8}{-10}=\frac{4}{5}
$$

a. Write the equation of the line through $(-2,3)$ and $(8,-5)$.

Solve for $<$ and y :
$y+5=$
b. Write the equation of the line perpendicular to $5 x-6 y=-60$ and through $(-4,17)$.
c. Write the equation of the line parallel to $y-4=\frac{1}{3}(x+2)$ and through the x-intercept of $5 x-6 y=-60$.

$$
y=\frac{1}{3}(x+12
$$

Objective 3: Solve a system that has multiple solutions Solve for x and y :

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Solve for } x \text { and } y: \\
\begin{array}{c}
(x-3)^{2}+(x+5)^{2}=49 \\
y=(x-4)
\end{array}
\end{array} \quad x-3\right)^{2}+(3 x+1)^{2}=49 \\
& \frac{\text { Solutions }}{(\sqrt{3.9}, 3 \sqrt{3.9}-4)} \quad x^{2}-6 x+9+9 x^{2}+6 x+1=49 \\
& (-\sqrt{3.9},-3 \sqrt{3.9}-4) \quad 10 x^{2}=39
\end{aligned} \quad \begin{aligned}
& x^{2}=3.9 \\
& x= \pm \sqrt{3.9}
\end{aligned}
$$

Objective 4: Write an equation of median in a triangle:
Triangle $A B C$ has coordinates $A(-1,-3), B(2,10)$, an $C(5,4)$. Write an equation for the median from C.

Objective 5: Find the length of an altitude of a triangle
Triangle ABC has coordinates $\mathrm{A}(1,-8), \mathrm{B}(2,10)$, and $\mathrm{C}(5,4)$. Find the length of the altitude from B .

Objective 6: Compute the distance between two lines
Find the distance between $y=\frac{1}{3} x+4$ and $y=\frac{1}{3} x+6$.

Find Point D and use this

Objective 7: Complete the square to write the equation of a circle in standard form
Write the standard form equation of the circle $x^{2}+y^{2}-16 x-6 y=62$ and identify the center and radius.

$$
\begin{aligned}
& x^{2}-16 x+64+y^{2}-6 y+2=62+64+9 \\
& (x-8)^{2}+(y-3)^{2}=135 \\
& \text { Center: }(8,3) \\
& \text { Radius: } \sqrt{135} \\
& \text { Write the standard } \\
& \text { Radius: } \sqrt{135}
\end{aligned}
$$

Challenge 8: Find the length of the common internal or external tangents
Find the length of the common external tangent between the two circles $(x-4)^{2}+(y+3)^{2}=36$ and $(x+1)^{2}+(y-5)^{2}=9 . \quad(-1,5) \quad \sqrt{2}=3$

$$
(4,-3) \quad r=6
$$

distance between Conker: $\sqrt{89}$

