Chapter 9 review Numbers game!

1) Chris can't decide where he's going! First he bikes 5 miles South, then 3 miles East, 2 miles North, 1 mile west, then finally 4 miles South. How far is he from the where he started.

$$
\begin{aligned}
2+7^{2} & =x^{2} \\
4+49 & =x^{2} \\
53 & =x^{2} \\
\pm \sqrt{53} & =x
\end{aligned}
$$

2) Given triangles with the following side lengths, determine if each is acute, obtuse, right, or none.
a. $4,5,8$
b. $12,8,25$
c. $2 \sqrt{5}, 4 \sqrt{7}, 5 \sqrt{3}$,

$64 \bigcirc 16+25$
64 (7) 41
obtuse
3) a. $2 \sqrt[{2 \sqrt{2675}}]{1223 \cdot 3}$

$$
2.35 \sqrt{3}
$$

$$
70 \sqrt{3}
$$

b. $2 \sqrt{50}-\sqrt{75}+5 \sqrt{100}-\sqrt{54}$

$$
\begin{aligned}
& 2 \sqrt{25 \cdot 2}-\sqrt{25 \cdot 3}+5 \cdot 10-\sqrt{9 \cdot 6} \\
& \frac{10 \sqrt{2}-5 \sqrt{3}+50-3 \sqrt{6}}{\tau_{\text {no like }} \text { term }}
\end{aligned}
$$

4) An isosceles trapezoid has sides with lengths $82,90,82,122$. Find the altitude.

$$
\begin{aligned}
& x^{2}+16^{2}=82^{2} \\
& x^{2}=6468 \\
& x^{2}=\sqrt{196} \quad \text { height }: 14 \sqrt{33} \\
& x= \pm 14 \sqrt{33}
\end{aligned}
$$

c. $\frac{8 \sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{8 \sqrt{6}}{2}=4 \sqrt{6}$

5) Find the missing lengths in the following triangles. Do NOT use Pythagorean Theorem unless it is necessary!

6) The distance between $(-3,4)$ and $(6, x)$ is 10 units. Find the value of x
$10=\sqrt{(6+3)^{2}+(x-4)^{2}}$
$(10)^{2}=\left(\sqrt{9^{2}+(x-4)^{2}}\right)^{2}$

$$
x=\frac{8 \pm \sqrt{64-4(1)(-3)}}{2(1)}
$$

$$
100=81+x^{2}-8 x+16
$$

$$
x=\frac{8 \pm \sqrt{64+12}}{2}
$$

$$
0=x^{2}-8 x-3
$$

$$
x=\frac{8 \pm \sqrt{76}}{2} \text { so } \frac{8+\sqrt{76}}{2}
$$

7) Find the missing variables in the following triangles.

8) Find all missing lengths.

9) If a rectangular prism has a rectangular base with sides of 8 and 15, and a diagonal of the prism is 65 , what is the height of the prism?

$$
\begin{aligned}
x^{2}+17^{2} & =65^{2} \\
x^{2} & =3936 \\
x^{2} & =\sqrt{16.246} \\
x & =4 \sqrt{246}
\end{aligned}
$$

10) Find the slant height of a square pyramid that has an altitude of length 15 and a lateral edge of length 25.

$$
\begin{aligned}
\frac{x \sqrt{2}}{\sqrt{2}} & =\frac{40}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
x & =20 \sqrt{2} \\
l^{2}+(10 \sqrt{2})^{2} & =25^{2} \\
l^{2}+100(2) & =625 \\
l^{2} & =425 \\
l & =5 \sqrt{17}
\end{aligned}
$$

