(#1-8) Graph each of the following. State the name of the conic and include:

- <u>Circles</u>: Center and radius
- Parabolas: Vertex, focus, directrix, focal width and direction it opens
- Ellipses: Center, endpoints of major and minor axes, and foci
- Hyperbolas: Center, vertices, slopes of asymptotes and foci

1.
$$x^2 + y^2 = 16$$

$$3. \quad \frac{x^2}{25} + \frac{y^2}{16} = 1$$

5.
$$(y+2)^2 = -12(x+3)$$

2.
$$x^2 = 8(y-2)$$

4.
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

6.
$$\frac{(x-3)^2}{12} + \frac{(y+2)^2}{21} = 1$$

7. $(x-3)^2 + (y+2)^2 = 9$

8. $x^2 - y^2 = 9$

(#9-16) For each of the following, write an equation in general form.

9. Circle; center at (-4,1); radius = 7

10. Circle; center at (2,5); contains (5,9)

11. Parabola; vertex at (0,2); directrix x = -2

12. Parabola opening up with a focus at (-1,3) and focal width 12

- **13.** Ellipse; foci at (6,0) and (-6,0); minor axis length = 16
- **14.** Ellipse; foci at (0,3) and (0,-3); endpoints of major axis (0,5) and (0,-5)

- **15.** Hyperbola; foci at (13,0) and (-13,0); transverse axis length = 24
- **16.** Hyperbola; vertices (4,1) and (-4,1); ends of conjugate axis at (0,4) and (0,-2)

(#17-22) Identify the shape and convert the following equations to general form by completing the square, if necessary.

17.
$$x^2 - 6x + y^2 - 8y = 0$$

18.
$$4y^2 - 9x^2 = 36$$

19.
$$y^2 + 4y - 4x = 0$$

20.
$$2x^2 + 3y^2 + 4x - 12y = 4$$

21.
$$4x^2 - y^2 - 32x + 16y - 128 = 0$$

22.
$$y = \frac{1}{4}x^2 + 1x - 4$$

(#23-24) Write parametric equations for each of the following.

23. A circle that is tangent to the x-axis at (5,0) and the y-axis at (0,5).

24. A hyperbola with standard equation

$$\frac{(y+2)^2}{9} - \frac{(x-3)^2}{16} = 1$$

(#25-26) Eliminate the parameter and identify the name of the conic section.

25.
$$x = 2 + 4\cos t$$

$$y = 3 + 3\sin t$$

26.
$$x = 4 \sec t + 2$$

 $y = 3 \tan t + 3$