Sec 9.8
gs. 414-417
\#3-5, 14, 16, 18, 20
\#3

slantheight: 10 altitude: $5 \sqrt{3}$
\#4
a. $H B=17$
b. $A G=17$

\# 5
a. $A D \quad 14$
b. YR 7
c. PR 25
d. The perimeter of base AMID 56
e. The diagonal of the base $14 \sqrt{2}$

\#14
a. $1 D=12$
b. $a l t=8$
c. $R D=6$
d. $6^{2}+10^{2}=x^{2}$
$2 \sqrt{34}$
$3^{2}+5^{2}=x^{2}$
$\sqrt{34}=\sqrt{x^{2}}$

$$
\sqrt{34}=x
$$

\#16

$$
\begin{gathered}
(5)^{2}+(5 \sqrt{2})^{2}=x^{2} \\
25+50=x^{2} \\
75=x^{2} \\
\sqrt{25 \cdot 3}=x \\
5 \sqrt{3}=x
\end{gathered}
$$

\#18
Find the diagonal if
$A B$

$$
\begin{gathered}
x^{2}+(x \sqrt{2})^{2}=c^{2} \\
x^{2}+2 x^{2}=c^{2} \\
\sqrt{3 x^{2}}=\sqrt{c^{2}} \\
x \sqrt{3}=c
\end{gathered}
$$

\#20 The dimensions of a rectangular solid are in a Ratio of 3:4:5. If the diagonal is $200 \sqrt{2}$, find the 3 dimensions

Dimensions: $(120,160,200)$

$$
\begin{aligned}
(5 x)^{2}+(5 x)^{2} & =(200 \sqrt{2})^{2} \\
25 x^{2}+25 x^{2} & =40000 \cdot 2 \\
50 x^{2} & =80,000 \\
x^{2} & =1600 \\
x & =40
\end{aligned}
$$

