Sec 9.8 pgs. 414 - 417 #3 - 5, 14, 16, 18, 20

slantheight: 10

#4

a.
$$HB = 17$$

#5

BASE

$$a. | ID = 12$$

c.
$$RD = 6$$

d.
$$6^{2}+10^{2} = x^{2}$$

$$3^{2}+5^{2} = x^{2}$$

$$\sqrt{34} = x^{2}$$

$$\sqrt{34} = x$$

#16

$$(5)^{2} + (5(2)^{2} = x^{2})^{2}$$

 $25 + 50 = x^{2}$
 $75 = x^{2}$
 $\sqrt{25 \cdot 3} = x$
 $\sqrt{6\sqrt{3} = x}$

#18

Find the diagonal if

AB
$$x^2 + (x\sqrt{2})^2 = c^2$$

 $x^2 + \lambda x^2 = c^2$
 $\sqrt{3}x^2 = \sqrt{c^2}$
 $x\sqrt{3} = c$

#20 The dimensions of a rectangular solid are in a Ratio of 3:4:5.

If the diagonal is 20012, find the 3 dimensions

Dimensions: (120, 160, 200)

$$(5x)^{2} + (5x)^{2} = (200\sqrt{2})^{2}$$

$$25x^{2} + 25x^{2} = 40000.2$$

$$50x^{2} = 80.000$$

$$x^{2} = 1600$$

$$x = 40$$