\#12 a. coordinates of $B \quad(1, \sqrt{3})$
b. slope of $O B$

$$
\begin{aligned}
& (0,0) \\
& (1, \sqrt{3})
\end{aligned} \quad m=\frac{\sqrt{3}}{1}=\sqrt{3}
$$

c. $\frac{A B}{O A}=\frac{\sqrt{3}}{1}=\sqrt{3}$

\#13
a. coordinates of $D(1,1)$
b. slope of $\overrightarrow{O D}$ II
c. $\tan 45^{\circ}$ (1)
\#14 Show that the altitude to the hypotenuse divides the hypotenuse in the ratio $1: 3$

$$
\frac{x}{3 x}=\frac{1}{3}
$$

A

\#17
Find: a.vs $3 \sqrt{3}$
b. ST 9

c. $V T \quad 6 \sqrt{3}$
d. Ratio of perimeter of $\triangle V S R$ to $\triangle V R T$

$$
\frac{\Delta V S R}{\Delta V R T}=\frac{9+3 \sqrt{3}}{18+6 \sqrt{3}}=\frac{3(3+\sqrt{3})}{6(3+\sqrt{3})}=\frac{3}{6}=\left[\frac{1}{2}\right.
$$

\#18 One of the angles of a rhombus has a measure of 120 . If the perimeter of the rhombus is 24 , find the length of each diagonal.

$$
\begin{aligned}
& d_{1}=6 \\
& d_{2}=6 \sqrt{3}
\end{aligned}
$$

\#20 Find the span

$$
\begin{aligned}
& \text { ext } y=\frac{360}{6}=60 \\
& \text { int } x=120 \\
& \text { span }=6 \sqrt{3}+6 \sqrt{3}=12 \sqrt{3} \\
& \text { OR divide into } \\
& \text { EQUILATERAL } A^{\prime} s
\end{aligned}
$$

\#21
a.

Find perimeter $=6(8)=48$
b. Find span: $\quad \frac{x \sqrt{2}}{\sqrt{2}}=\frac{6}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$

$$
\begin{aligned}
\text { span } & =6+3 \sqrt{2}+3 \sqrt{2} \\
& =6+6 \sqrt{2}
\end{aligned}
$$

\#27

$\triangle B E F \sim \triangle B A C$ by $A A \sim$

$$
\begin{aligned}
& \frac{E F}{A C}=\frac{B F}{B C} \\
& \frac{x}{5}=\frac{12-x \sqrt{3}}{12} \\
& 12 x=60-5 x \sqrt{3} \\
& 12 x+5 \times \sqrt{3}=60 \\
& x(12+5 \sqrt{3})=60 \\
& x=\frac{60}{12+5 \sqrt{3}} \\
& x=\frac{60}{12+5 \sqrt{3}}=5+\frac{12}{\sqrt{3}}
\end{aligned}
$$

