
9.4 Warm Up

The Pythagorean Cowers

If c is the length of the longest side of a triangle and... $c^{2}=a^{2}+b^{2}$ then the triangle is right $c^{2}<a^{2}+b^{2}$ then the triangle is acute $c^{2}>a^{2}+b^{2}$ then the triangle B obtuse

What kinds of triangles are these?
$24,26,10$ __right
7,9,3 obtuse
4, 2, 7 impossible!
The Distance Formula
In the diagram below, use the
Pythagorean Theorem to find the distance between A and B as well as the distance between C and D .

How can we find the distance between A and B in this diagram?

$$
c=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Distance Formula Practice
Find the distance between the two points:

1. $(2,6)$ and $(5,10)$

$$
\sqrt{4^{2}+3^{2}}
$$

$$
\text { 2. } \begin{gathered}
\sqrt{(4,-8) \text { and }(-1,-3)} \\
\sqrt{(-3+8)^{2}+(-1-4)^{2}}{ }^{5^{2}+(-5)^{2}} \\
\sqrt[50]{50}
\end{gathered}
$$

Want a challenge?
3. If the distance between $\left(-2, y_{1}\right)$ and $(6,8)$ is $4 \sqrt{5}$, find the missing y value.

$$
\begin{array}{ll}
4 \sqrt{5}=\sqrt{\left(8-y_{1}\right)^{2}+(6--2)^{2}} \\
2 & \\
80=\left(8-y_{1}\right)^{2}+64 & y_{1}^{2}-16 y_{1}+48 \\
16=\left(8-y_{1}\right)^{2} & y_{1}=4, y_{1}=12
\end{array}
$$

4. If the point $(x, 4)$ is equidistant from the points $(-2,-3)$ and $(6,1)$, find x.

$$
\sqrt{(-3-4)^{2}+(-2-x)^{2}}=\sqrt{(1-4)^{2}+(6-\alpha)^{2}}
$$

$53<9,=$

