\#3, 6, 11,
13-17, 20
\#3 find perimeter of rhombus

$$
\begin{aligned}
6^{2}+8^{2} & =x^{2} \quad P=4(10)=40 \\
36+64 & =x^{2} \\
100 & =x^{2} \\
10 & =x
\end{aligned}
$$

\#6 PM is an altitude of equilateral triangle PKO.
If $P K=4$, find $P M$

$$
\begin{aligned}
x^{2}+2^{2} & =4^{2} \quad P M=2 \sqrt{3} \\
x^{2}+4 & =16 \\
x^{2} & =12 \\
x & = \pm \sqrt{4 \cdot 3} \\
x & = \pm 2 \sqrt{3}
\end{aligned}
$$

\#11 a. $x^{2}+y^{2}=A B^{2}$

$$
\sqrt{x^{2}+y^{2}}=A B
$$

b. $2^{2}+x^{2}=A B^{2}$

$$
\sqrt{4+x^{2}}=A B
$$

d.

$$
\begin{aligned}
B C^{2}+(5 C)^{2} & =(13 C)^{2} \\
B C^{2}+25 C^{2} & =169 C^{2} \\
B C^{2} & =144 c^{2} \\
B C & =12 C
\end{aligned}
$$

\#13
Al Capone walked 2 km north, 6 km west, 4 km north, and 2 km west. If Big Al decides to "go straight," how far must he walk across the fields to his starting point.

\#14 Find the altitude (length of a segment perpendicular to both bases) of the isosceles trapezoid shown

$$
\begin{aligned}
x^{2}+3^{2} & =9^{2} \\
x^{2}+9 & =81 \\
x^{2} & =72 \\
x & =\sqrt{36 \cdot 2} \\
x & = \pm 6 \sqrt{2}
\end{aligned}
$$

\#15 A piece broke off a rectangle ABDF, leaving trapezoid ACDF. What is the perimeter of triangle ACE

\#16 Given: Diagram as shown
Find: $C D$

$$
\begin{aligned}
6^{2}+8^{2} & =x^{2} \\
100 & =x^{2} \\
10 & =x
\end{aligned}
$$

$$
\begin{array}{ll}
6^{2}=y \cdot 10 & C D^{2}=3.6 \cdot 6.4 \\
36=10 y & \sqrt{C D^{2}}=23.04 \\
3.6=y & C D=48
\end{array}
$$

\#17

$$
\begin{array}{rlr}
1^{2}+1^{2} & =a^{2} & \\
2 & =a^{2} & \\
\sqrt{2} & =a & \\
1^{2}+(\sqrt{2})^{2} & =b^{2} & \\
1+2 & =b^{2} & \\
\sqrt{3} & =b & \\
1^{2}+(\sqrt{3})^{2} & =c^{2} & 1^{2}+2^{2}=x^{2} \\
1+3 & =c^{2} & 1+4=x^{2} \\
4 & =c^{2} & 5 \\
2 & =c & \sqrt{5}
\end{array}=x .
$$

\#20 Find the perimeter of an isosceles right triangle with a $6-\mathrm{cm}$ hypotenuse

$$
\begin{aligned}
x^{2}+x^{2} & =36 \\
2 x^{2} & =36 \\
x^{2} & =18 \\
x & =\sqrt{9.2} \\
x & =3 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \sqrt{2}+3 \sqrt{2}+6 \\
& \frac{6 \sqrt{2}+6 \mathrm{~cm}}{}
\end{aligned}
$$

