\#3 Solve for p and q in the figure shown

$$
\begin{aligned}
& \frac{6}{10}=\frac{q}{15} \\
& \frac{3}{5}=\frac{q}{15} \\
& 5 q=45 \\
& q=9
\end{aligned}
$$

$$
\begin{aligned}
\frac{p}{p+2} & =\frac{9}{15} \\
15 p & =9(p+2) \\
15 p & =9 p+18 \\
6 p & =18 \\
p & =3
\end{aligned}
$$

\#5 Solve for x in the diagram shown

$$
\begin{aligned}
\frac{10}{5} & =\frac{2}{x} \\
10 x & =10 \\
x & =1
\end{aligned}
$$

\#7 Find x

$$
\begin{gathered}
\frac{6}{4}=\frac{x}{6} \\
4 x=36 \\
x=9
\end{gathered}
$$

\#8 A 60 m tower casts a 50 m shadow, while one-block away a telephone pole casts a $20 \cdot \mathrm{~m}$ shadow. How tall is the telephone pole?

$$
\begin{aligned}
& \frac{60}{x}=\frac{50}{20} \\
& 5 x=120
\end{aligned}
$$

$$
x=24
$$

\# 9 Given: $\Varangle 丁 \cong \Varangle M K O$

$$
\begin{aligned}
& M K=12 \\
& K O=8 \\
& M O=10 \\
& J K=3
\end{aligned}
$$

Find: $P O$ and $J P$

$$
\begin{array}{rl}
\frac{12}{3}=\frac{10}{P 0} & \frac{12}{15}=\frac{8}{J P} \\
12 P O=30 & 12 J P=120 \\
P O=\frac{5}{2} & J P=10
\end{array}
$$

$$
\begin{aligned}
& \frac{10}{7}=\frac{8}{x} \\
& 10 x=56 \\
& x=\frac{28}{5}=5.6
\end{aligned}
$$

\#13 Given: $r\|s\| t$

$$
\begin{aligned}
& W V=3 \\
& W X=8 \\
& Q Y=9
\end{aligned}
$$

Find: $Q Z$ and $Z Y$

$$
\begin{array}{ll}
\frac{3}{8}=\frac{x}{9-x} \\
3(9-x)=8 x & 9-\frac{27}{11} \\
27-3 x=8 x & \frac{99}{11}-\frac{27}{11}=\frac{72}{11} \\
27=11 x & \\
\frac{27}{11}=x
\end{array}
$$

\#16 Given: $\Varangle 3 \cong \Varangle 5$
Prove: $\frac{R V}{V T}=\frac{R S}{S T}$

1. $43 \cong \Varangle 5$
2. $\Varangle 3 \cong \Varangle 4$
3. $44 \cong \Varangle 5$
4. $\frac{R V}{V T}=\frac{R S}{S T}$
\#20 Given: $\overleftrightarrow{G K} \| \overleftrightarrow{H J}$
lengths as shown
Find. The perimeter of $\triangle H J F$

$$
\begin{gathered}
\frac{9}{x+3}=\frac{4}{x-2} \\
9(x-2)=4(x+3) \\
9 x-18=4 x+12 \\
5 x=30 \\
x=6
\end{gathered}
$$

$$
\begin{aligned}
& \frac{9}{18}=\frac{7}{y} \\
& \frac{1}{2}=\frac{7}{y} \\
& y=14
\end{aligned}
$$

1. Given
2. V.A. are \cong
3. Transitive
4. Angle bisector theorem

$$
\begin{aligned}
P & =9(2)+4(2)+14 \\
& =18+8+14 \\
& =40
\end{aligned}
$$

