p. 348: 7, 9, 11, 16, 17, 19
\#7 $\triangle A B C \sim \triangle D E F$
Find: $A C$ and $E F$

$$
\begin{array}{ll}
\frac{6}{12}=\frac{A C}{8} & \frac{6}{12}=\frac{7}{E F} \\
12 A C=48 & 6 E F=84 \\
A C=4 & E F=14
\end{array}
$$

\#9
A shadow problem: Mannertink observed that a tree was casting a $30-\mathrm{m}$ shadow. A nearby flagpole was casting a $24-\mathrm{m}$ shadow. If the flagpole was 20 m high, how tall was the tree

$$
\begin{aligned}
\frac{x}{20} & =\frac{30}{24} \\
\frac{x}{20} & =\frac{5}{4} \\
4 x & =100 \\
x & =25
\end{aligned}
$$

$\triangle A C B \sim \triangle E C D$
$41 \cong \Varangle 2$ CAST
$\overline{A B} \| \overline{D E}$ if alt.int. xis $\cong \rightarrow$ ll lines
\#16 Given: Trapezoid $A B C D$ wal bases $\overline{A B}$ and $\overline{C D}$
Prove: $A E \cdot C D=E C \cdot A B$

1. Given
2. If trap. \rightarrow bases //
3. If II lines \rightarrow alt. int. Δ is \cong
4. If 11 lines \rightarrow ait. int. \Varangle is \cong
5. AA N

6 CSSTP
7. Mean Extremes Theorem
\#17 $\Varangle M \cong \Varangle S$

$$
\begin{aligned}
& M P=8 \\
& P R=6 \\
& S P=7
\end{aligned}
$$

$$
\begin{aligned}
\frac{7}{8} & =\frac{6}{x} \\
7 x & =48 \\
x & =\frac{48}{7} \text { or } 6 \frac{6}{7}
\end{aligned}
$$

\#19 Given: $\overrightarrow{B E} \| \overleftrightarrow{C D}$

$$
\begin{aligned}
& A B=6 \\
& B C=2 \\
& B E=9
\end{aligned}
$$

$$
\begin{array}{r}
\frac{6}{8}=\frac{9}{x} \\
6 x=72 \\
x=12
\end{array}
$$

