

Think about it: Always, Sometimes, Never

1. If two triangles are similar, then they are congruent.
2. If two triangles are congruent, then they are similar.
3. If two triangles are obtuse then they are similar
4. If two triangles are equilateral, then they are similar A
5. Rectangles are similar S

1-6) Decide if the information given in each diagram is enough to prove that the two triangles are similar. If there is enough information, state why the triangles are similar and state which two triangles are similar.

$\frac{3}{18}=\frac{1}{6} \quad \frac{4}{24}=\frac{1}{6} \quad \frac{5}{30}=\frac{1}{6}$
yes! sssn

Yes! MAn

yes! SASN

1. Given: $A B C D$ is a parallelogram

Prove: $\triangle \mathrm{BFE} \sim \triangle C F D$

1. $A B C D$ is a
2. $\Varangle 1 \cong \Varangle 2$
3. $\overline{D C} \| \overline{A B}$
4. $43 \cong \times 4$
5. $\triangle B F E \sim \triangle C F D$
6. Given: $\overline{D E} \| \overline{A B}$

$$
\overline{\mathrm{EF}} \| \overline{A C}
$$

Prove: ${ }_{\triangle} C D E \sim \triangle E F B$

1. Given
2. If /I lines \rightarrow corr. $4 s \cong$
3. Given
4. Same as 2
5. AA ~
6. The sides of one triangle are 8,14 , and 12 , and the sides of another triangle are 18,21 , and 12 . Why are these triangles similar?

18

4. Given: $\triangle J^{\prime} O^{\prime} R^{\prime}$ is not a dilation of $\triangle J O R$

Prove: $O^{\prime} R^{\prime}$ does not equal 40

$$
\begin{aligned}
& E: O^{\prime} R^{\prime} \neq 40 \text { OR } O^{\prime} R^{\prime}=40 \\
& A: O^{\prime} R^{\prime}=40 \\
& T: \frac{5}{25}=\frac{1}{5} \quad \frac{8}{40}=\frac{1}{5} \quad \frac{6}{30}=\frac{1}{5}
\end{aligned}
$$

and $\triangle J^{\prime} O^{\prime} R \sim \triangle J O R$ (a dilation by a scale of 5) which contradicts by SSS ~ our given \therefore our assumption is false and $O^{\prime} R \neq 40$

