Similarity: Same Shape, but not necessarily the same size

Similar Polygons

- 1. The ratio of the measures of corresponding sides is =
- 2. Corresponding angles are =

Dilation: Enlargement (Scale 1)

Reduction: opp. of dilation (scale)

 Δ ABC $\sim \Delta$ DEF

$$\frac{.5}{5} = \frac{7}{35} = \frac{1}{5}$$
 $\frac{4.8}{24} = \frac{1}{5}$

Ex 1-2: Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

Sm: 18 = 2

 $med: a4 = \frac{2}{50}$

 $tar: \frac{30}{75} = \frac{2}{5}$

2.

3. Given: $\Delta BAT \sim \Delta DOT$

$$OT = 15$$
, $BT = 12$, $TD = 9$

Find: The measure of segment AO

4. Find the values of x and y: $\Delta JHK \sim \Delta POM, \angle H = 90^{\circ}, \angle J = 40^{\circ}$

$$\angle M = x + 5$$
, and $\angle O = \frac{1}{2}y$.

Ex 5:

$$\Delta$$
RST $\sim \Delta$ CBA

$$\angle R = 80^{\circ}$$
, $\angle S = 70^{\circ}$

$$m\angle C = x + 20$$
, $m\angle A = \frac{1}{2}y$, $m\angle B = 0.4z$

Find:
$$x+y+z$$

Discover with

IN G INVENTABLE ~ EFGH

Find the ratio of the perimeter of ABCD to the perimeter of EFGH

$$\frac{2}{3} = \frac{3}{CO}$$

$$\frac{2}{3} = \frac{7}{AD}$$

Ex 7: Given: The triangles are similar

a. Find the perimeter of each triangle. What is the ratio of the perimeters?

$$\frac{18}{54} = \frac{3}{9} = \frac{1}{3}$$

b. Find the area of each triangle. What is the ratio of the areas?

$$A = \frac{8.3}{2} = 16$$

$$A = \frac{8.3}{2} = 12$$
 $A_2 = \frac{24.9}{2} = 108$ $\frac{12}{108} = \frac{12}{108}$

Ex 8:

Are the rectangles similar? Explain why.

Find the perimeter of each rectangle. What is the ratio of the perimeters?

$$\frac{18}{90} = \frac{1}{5}$$

$$\frac{18}{90} = \frac{1}{5}$$
 $\frac{20}{500} = \frac{1}{25}$

Find the area of each rectangle. What is the ratio of the areas? How is it related to the ratios of the perimeters and the ratios of the sides?

$$\left(\frac{P_1}{P_2}\right)^2 = \frac{A_1}{A_2}$$

Conclusion: