Similarity: Same shape, but not necessarily the same size

Similar Polygons

1. The ratio of the measures of corresponding sides is $=$
2. Corresponding angles are \cong

Dilation: Enlargement (scale \uparrow)
Reduction: opp. of dilation (scale \downarrow)

$$
\frac{5}{25}=\frac{1}{5}
$$

$$
\frac{1.4}{7} \cdot \frac{5}{5}=\frac{7}{35}=\frac{1}{5}
$$

$\frac{1.4}{7} \cdot \frac{5}{5}=\frac{7}{35}=\frac{1}{5} \quad \frac{4.8}{24}=\frac{1}{5}$

Ex 1-2: Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

Sm: $\frac{18}{45}=\frac{2}{5} \quad$ med: $\frac{24}{60}=\frac{2}{5} \quad$ Lar: $\frac{30}{15}=\frac{2}{5}$
2.

No!
3. Given: $\triangle \mathrm{BAT} \sim \Delta \mathrm{DOT}$

$$
\mathrm{OT}=15, \mathrm{BT}=12, \mathrm{TD}=9
$$

Find: The measure of segment AO

4. Find the values of x and y :
$\triangle \mathrm{JHK} \sim \triangle \mathrm{POM}, \angle \mathrm{H}=90^{\circ}, \angle \mathrm{J}=40^{\circ}$
$\angle \mathrm{M}=\mathrm{x}+5$, and $\angle \mathrm{O}=\frac{1}{2} \mathrm{y}$.

Ex 5:

Δ EST $\sim \Delta$ CBA
$\angle \mathrm{R}=80^{\circ}, \angle \mathrm{S}=70^{\circ}$
$\mathrm{m} \angle \mathrm{C}=\mathrm{x}+20, \mathrm{~m} \angle \mathrm{~A}=\frac{1}{2} \mathrm{y}, \mathrm{m} \angle \mathrm{B}=0.4 \mathrm{z}$
Find: $x+y+z$

R

$$
\begin{array}{r}
x+20=80 \\
x=60
\end{array}
$$

Discover with

Find the ratio of the perimeter of $A B C D$ to the perimeter of EFGH
$\frac{6}{9}=\frac{2}{3}$

$$
\begin{aligned}
& \frac{2}{3}=\frac{4}{B C} \\
& 2 B C=12
\end{aligned}
$$

$$
\frac{2}{3}=\frac{3}{C D}
$$

$$
\frac{2}{3}=\frac{7}{A D}
$$

$$
2 C D=9
$$

$$
2 A D=21
$$

$$
B C=6
$$

$$
C O=4.5
$$

$$
A D=10.5
$$

Ex 7: Given: The triangles are similar
a. Find the perimeter of each triangle. What is the ratio of the perimeters?

$$
\frac{5}{15}=\frac{1}{3} \quad \frac{18}{54}=\frac{3}{9}=\frac{1}{3}
$$

b. Find the area of each triangle. What is the ratio of the areas?

$$
A_{1}=\frac{8.3}{2}=12 \quad A_{2}=\frac{24.9}{2}=108 \quad \frac{12}{108}=\frac{1}{9}
$$

Ex 8 :
a) Are the rectangles similar? Explain why. Yes": $A L K s \cong$ and ratio of
corresponding sides $=(1 / 5)$

b) Find the perimeter of each rectangle. What is the ratio of the perimeters?

$$
\frac{18}{90}=\frac{1}{5} \quad \frac{20}{500}=\frac{1}{25}
$$

c) Find the area of each rectangle. What is the ratio of the areas?

How is it related to the ratios of the perimeters and the ratios of the sides?

$$
\left(\frac{P_{1}}{P_{2}}\right)^{2}=\frac{A_{1}}{A_{2}}
$$

Conclusion:

