

 $\frac{5}{\frac{1}{2}} = \frac{3}{\times}$

 $5X = \frac{3}{2}$

 $\overline{x = \frac{3}{10}}$

1. Find x.
$$\frac{-6x}{x-7} = \frac{6x+5}{6}$$
 $(6x+5)(x-7) = -36x$
 $6x^2 - 37x - 35 = -36x$
 $6x^2 - x - 35 = 0$
 $(2x-5)(3x+7) = 0$
 $x = \frac{5}{2}$ $x = -\frac{7}{3}$

- 2. Find the 4th term or 4th proportional of 5, $\frac{1}{2}$, and 3.
- 3. Find the mean proportional of 14 and 8.

$$\frac{14}{x} = \frac{x}{8} \qquad x^{2} = 112 x = \pm \sqrt{16}7 x = \pm \sqrt{17}$$

4. Find the arithmetic mean of 16 and 12

 $\frac{16+12}{2} = \frac{28}{2} = 14$

5. Find the ratio of x to y: ax - by + cx = px + hy - 3by

ax + cx - px = hy - 2byx(a+c-p) = y(h-2b) $\frac{x}{y} = \frac{h-2b}{a+c-p}$

6. Solve for k:
$$\frac{2x-5}{x} = \frac{6}{x-3} + 2$$
$$\frac{2x-5}{x} = \frac{4}{x-3} + \frac{2(x-3)}{(x-3)}$$
$$\frac{2x-5}{x} = \frac{4}{x-3} + \frac{2(x-3)}{(x-3)}$$
$$-11x + 15 = 2x^{2}$$
$$-11x + 15 = 2x^{2}$$
$$-11x = -15$$
$$x = \frac{4}{x-3} + \frac{2(x-3)}{x-3}$$

	C	

8.1-8.4 Review

11. Fill in the following blanks and draw a diagram:

12. Is the pairs of triangles similar? If so, which triangles are similar and why are they similar?

- 13. Indicate whether the statement is true Always, Sometimes, or Never:
- ς a. Two similar isosceles triangles are congruent.
- S b. Two right triangles are similar.
- S c. Two equilateral polygons are similar.
- S d. If two triangles are similar then they are congruent.
- e. If two triangles are congruent then they are similar. a
- f. Two isosceles triangles are similar if a base angle of one is congruent to a base a angle of the other.
- a g. Two isosceles triangles are similar if the vertex angle of one is congruent to the vertex angle of another.

If you finish your dart questions:

Practice this Proof:

17. Given: BDEC is a trapezoid with bases BD and CE

Prove: AB * CE = AC * BD

1. G
a.
$$BD //CE$$

3. $\angle ABD \stackrel{\sim}{=} \angle C$
4. $\angle A \stackrel{\sim}{=} \stackrel{\sim}{=} \stackrel{\sim}{=} A$
5. $\triangle ABD \sim \triangle ACE$
6. $\frac{AB}{AC} = \frac{BD}{CE}$
7. $AB \cdot CE = AC \cdot BD$

1. Given a. If trap > bases // 3. If // lines > corr. Xis = 4. Reflexive 5. AA~ 6. CSSTP 7. Means Extremes The