### 8.1 NOTES - Relationships Involving Polygons

Consider the proportion $\frac{a}{b}=\frac{c}{d} \quad$ terms: $\quad \frac{1 s t}{2 n d}=\frac{3 r d}{4 t h}$
The $1^{\text {st }}$ and $4^{\text {th }}$ terms are called extremes.
The $2^{\text {nd }}$ and $3^{\text {rd }}$ terms are called means.
Mean -Extremes Products Theorem

If $\frac{a}{b}=\frac{c}{d}$, then $a d=b c$.

Means-Extremes Ratio Theorem
If $p q=r s$, then $\frac{p}{r}=\frac{s}{q}, \quad \frac{p}{s}=\frac{r}{q}$, and $\frac{r}{p}=\frac{q}{s}$.

Example 1: $\frac{2}{x}=\frac{10}{14}$, solve for $x$.

Example 2: If $3 x=4 y$, find the ratio of $x$ to $y$.

Example 3: If $\frac{4}{2 x-3 y}=\frac{5}{x+2 y}$ Find the ratio of $x$ to $y$.

Example 4: Find the fourth term of a proportion if the $1^{\text {st }}$ three terms are 2, 3, 4.

Geometric Mean/Mean Proportional - Means in a proportion are equal

Example 5: Find the geometric mean between 3 and 27.

Example 6: Find the mean proportional between 4 and 16.

Example 7: Find the arithmetic mean between 5 and 9
Example 8: Show that $\frac{a}{b}=\frac{c}{d}$ is equivalent to $\frac{a+b}{b}=\frac{c+d}{d}$

Partner Practice


1. Find the arithmetic mean between 6 and 30 .

$$
\frac{6+30}{2}=18
$$

3. Find the geometric mean between 16 and 25 .

$$
\begin{array}{ll}
\frac{16}{x}=\frac{x}{25} & x^{2}=400 \\
x= \pm 20
\end{array}
$$

2. Find the fourth proportional of 6,8 , and 9 .

$$
\frac{6}{8}=\frac{9}{x} \begin{array}{ll}
6 x=72 \\
x=12
\end{array}
$$

4. Find the mean proportional between 10 and 8.

$$
\begin{array}{ll}
\frac{10}{x}=\frac{x}{8} & x^{2}=80 \\
x^{2}= \pm \sqrt{80} \text { or } \pm 4 \sqrt{5}
\end{array}
$$

6. Solve for $x$ :

$$
\frac{x+5}{6}=\frac{7}{x-6}
$$

$$
\begin{gathered}
(x+5)(x-6)=42 \\
x^{2}-6 x+5 x-30=42 \\
x^{2}-x-72=0 \\
(x-9)(x+8)=0 \\
x=9,-8
\end{gathered}
$$

7. $3 \sqrt{6}$ is the mean proportional between 6 and what number?

$$
\begin{array}{ll}
\frac{6}{3 \sqrt{6}}=\frac{3 \sqrt{6}}{x} & 6 x=9(6) \\
x=9
\end{array}
$$

8. Find the ratio of $x$ to $y . \quad g x-f y=h x+m y$

$$
\begin{gathered}
g x-h x=m y+f y \\
\frac{x(g-h)}{y(g-h)}=\frac{y(m+f)}{y(g-h)} \\
\frac{x}{y}=\frac{m+f}{g-h}
\end{gathered}
$$

