p. 336: 9-18
\#ic is $\frac{x-5}{4}=\frac{c}{3}$ equivalent to $\frac{x-1}{4}=\frac{c+3}{3}$

$$
\begin{array}{ll}
3(x-5)=4 c & 3(x-1)=4(c+3) \\
3 x-15=4 c & 3 x-3=4 c+12 \\
3 x-4 c=15
\end{array} \quad \text { yES } \quad 3 x-4 c=15
$$

\# 19

$$
\begin{aligned}
& \text { Find the Ratio of: } \frac{x(a+b)}{y(d+b)}=\frac{y(c+d)}{y(a+b)} \\
& x \text { to } y \\
& \frac{x}{y}=\frac{c+d}{a+b}
\end{aligned}
$$

\#20 if ex-fy $=9 x$ thy, find the ratio of x to y

$$
\begin{aligned}
e x-g x & =h y+f y \\
\frac{x(e-g)}{y(e-g)} & =\frac{y(n+f)}{y(e-g)} \\
\frac{x}{y} & =\frac{h+f}{e-g}
\end{aligned}
$$

\#21 Reduce to : $\frac{x^{2}-7 x+12}{x^{2}-16}=\frac{(x-3)(x-4)}{(x-4)(x+4)}=\frac{x-3}{x+4}$
\#23 Show that no polygon exists in which the ratio of the number of diagonals to the sum of the measures of the polygons angles is 1 to 18

$$
\frac{\frac{n(n-3)}{2}}{180(n-2)}=\frac{1}{18}
$$

$$
\begin{aligned}
& \text { (18) } \frac{n(n-3)}{2}=180(n-2) \\
& 9 n(n-3)=180 n-360 \\
& 9 n^{2}-27 n=180 n-360 \\
& 9 n^{2}-207 n+360=0 \\
& 9\left(n^{2}-23 n+40\right)=0 \quad \text { Not factorable } \therefore \text { "no integer" solution }
\end{aligned}
$$

\#24 If $\frac{a}{b}=\frac{c}{d}$ show that $\frac{a-b}{b}=\frac{c-d}{d}$

$$
\begin{aligned}
& \frac{a}{b}-1=\frac{c}{d}-1 \\
& \frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d} \\
& \frac{a-b}{b}=\frac{c-d}{d}
\end{aligned}
$$

\#9 Given: $\Delta S V T \sim \Delta W Y X$
Find: $W Y$ and $V T$.

$$
\begin{array}{ll}
\frac{10}{8}=\frac{7}{W Y} & \frac{10}{8}=\frac{V T}{6} \\
10 W Y=56 & 8 V T=60 \\
W Y=5.6 & V T=7.5
\end{array}
$$

\#10 Given: ABCD ~HGFE
Find: a. The ratio of lengths of corresponding sides

$$
\frac{9}{6}=\frac{3}{2}
$$

b. $E F \quad \frac{3}{2}=\frac{12}{E F}$

$$
\begin{gathered}
3 E F=24 \\
E F=8
\end{gathered}
$$

c. Perimeter of $\frac{3}{2}=\frac{15}{1 H G}$

$$
P=6+8+\varepsilon+10
$$

$$
=32
$$

$$
3 H G=30
$$

$$
H G=10
$$

d. The Ratio of $\begin{aligned} & P_{A B C D} \\ & \text { the perimeters }\end{aligned} \frac{48}{P_{H G F E}}=\frac{3}{32}$
** Note: The ratio of the pen meter of the sides
\#II Given: $\triangle K J M \sim \triangle O P R$

$$
\begin{aligned}
& \text { Find: } \frac{x+y+z}{2} \\
& \frac{50+160+200}{2}=\frac{410}{2} \\
& =205
\end{aligned}
$$

\#12 Find the $4^{\text {th }}$ proportional of 1,2 , and 3 to the $4^{\text {th }}$ proportional of 4.5 , and 6

$$
\begin{array}{ll}
\frac{1}{2}=\frac{3}{x} & \frac{4}{5}=\frac{6}{x} \\
x=6 & 4 x=30 \\
& x=7.5
\end{array}
$$

$$
\frac{6}{7.5}=\frac{4}{5}
$$

\#13 if $\frac{8}{2 x-3 y}=\frac{7}{6 x-4 y}$

$$
\begin{aligned}
& 8(6 x-4 y)=7(2 x-3 y) \\
& 48 x-32 y=14 x-21 y \\
& 34 x=\frac{11 y}{34 y} \\
& \frac{x}{y}=\frac{11}{34}
\end{aligned}
$$

\#14 The roof of a house has a slope of $\frac{5}{12}$. Of the house if the height of the roof is 8 ft ?

$$
\begin{aligned}
\frac{\text { rise }}{\text { run }}=\frac{5}{12} & =\frac{8}{x} \\
5 x & =96 \\
x & =19.2
\end{aligned}
$$

\# 15 Hammond R. looked at the plans for the new house he was building. The plans were drawn down to a scale Of $\frac{1}{4}$ in $=1 \mathrm{ft}$. . He measured the size of a room on the plans and found it to be 2.75 in. by 3.5 in . About how large is the room?
$2.75 \times 4=11$
lift by 14 ft
$3.5 \times 4=14$
\#16 Draw a triangle. Using some point P in the interior of the triangle as the point of dilation, draw a triangle twice the size of the original triangle

\#17 The projector shown uses a slide in which the rectangular transparency measures 3 cm by 4 cm . The slide is 5 cm behind the lens. How large is the rectangular image on the screen?

\#18 Given: $\triangle A B C \sim \triangle D E F$

$$
\begin{aligned}
& m \angle A=50 \\
& m \angle D=2 x+5 y \\
& m \angle F=5 x+y \\
& m \angle B=102-x
\end{aligned}
$$

Find: $m \npreceq F$

$$
\begin{aligned}
& \Varangle A \cong \Varangle D \\
& \Varangle C \cong \Varangle F \\
& \Varangle B \cong \Varangle E
\end{aligned}
$$

$$
\begin{aligned}
x E & =180-x D-4 F \\
& =180-(2 x+5 y)-(5 x+y) \\
& =180-2 x-5 y-5 x-y \\
& =180-7 x-6 y
\end{aligned}
$$

Since $\Varangle B \cong \measuredangle E$
Since $\Varangle D \cong \triangle A$

$$
\begin{aligned}
& 102-x=180-7 x-6 y \\
& 6 x+6 y=78
\end{aligned}
$$

$$
2 x+5 y=50
$$

$$
\begin{aligned}
&-3(2 x+5 y=50) \Rightarrow-6 x-15 y=-150 \\
& 6 x+6 y=78 \Rightarrow \begin{aligned}
6 x+6 y & =78 \\
-9 y & =-72 \\
y & =8 \\
x & =5
\end{aligned}
\end{aligned}
$$

