7.4- Regular Polygons

Recognize regular polygons and use a formula to find exterior angles of a regular polygon Investigate: The following are regular polygons

What are the two characteristics that must be met for a polygon to be regular?

1) equiangular
2) equilateral

Exterior Angles of an Equiangular (regular) Polygon:

The following is a regular pentagon. What is the measure of angle 1 in the diagram below?

What is the measure of the Sum of the Exterior Angles of a Pentagon? 360°
If the Pentagon is equiangular, what is the measure of each Exterior Angle? $\frac{360}{5}=72$

The measure of each exterior angle, E, of an equiangular polygon is:

$$
E=\frac{360}{n} \quad n \text { is the } \# \text { of sides }
$$

***This formula can only be used for a polygon where each angle is THE SAME

Look for key words such as "regular," "equiangular," and "each angle.

If we can find one Exterior Angle of a Regular Polygon. What would be the fastest way to find an interior angle, I?

Example 1: Find the measure of an interior angle of a regular hexagon.

Example 2: Find the measure of each interior angle of a regular nonagon.

$$
\text { ext x: } \frac{360}{9}=40^{\circ} \quad \begin{aligned}
\text { int } x & =180-40 \\
& =140
\end{aligned}
$$

Practice Problems

3) If each exterior angle of a regular polygon is 18 degrees, how many sides does it have?

$$
E=\frac{360}{n} \quad 18=\frac{360}{n}, \begin{aligned}
18 n & =360 \\
n & =20
\end{aligned}
$$

$$
20 \text { sidES }
$$

4) If each interior angle of a regular polygon is 108 degrees, how many sides does it have?
int $x=108$
ext $x=72^{\circ}$

$$
E=\frac{360}{n}
$$

$72=\frac{360}{n}$
$72 n=360$
$n=5$
5) What is the name given to the polygon whose exterior angles each measure 50 degrees?

$$
=\frac{360}{n}
$$

$$
50=\frac{360}{n}
$$

$50 n=360$

$$
n=7.2
$$

??7 There is none!
5) Find the measure of each angle of a regular octagon.

$$
\begin{aligned}
\text { ext } x & =\frac{360}{8} & \operatorname{lnt} x & =180-45 \\
& =45 & &
\end{aligned}
$$

6) HEXAGO is a regular hexagon. Find $m<N$.

$$
\text { Find } \angle G=120^{\circ}
$$

