Section 7.4
p. 316: 1-4(a \& e only)
$\underline{5}, 6,7,10,11,13, \underline{14}, 17$
\#1 $a \cdot \frac{360}{3}=120^{\circ} \quad$ e. $\frac{360}{15}=24^{\circ}$
\#2 a. $\operatorname{ext} \Delta=\frac{360}{5}=72^{\circ}$

$$
\text { int } 4=180-72=108^{\circ}
$$

$$
\begin{aligned}
& \text { e. ext } \Varangle=\frac{360}{21}=17.14 \ldots \\
& \text { int } \Varangle=180 \text {-ans }=162.86
\end{aligned}
$$

\#3

$$
\begin{aligned}
60 & =\frac{360}{n} \\
n & =6
\end{aligned}
$$

e. $\quad 7.5=\frac{360}{n}$

$$
n=48
$$

\#4 \quad a.

$$
\begin{aligned}
& \text { int } \alpha=144^{\circ} \\
& \operatorname{ext} \alpha=36^{\circ} \\
& 36=\frac{360}{n} \\
& n=10
\end{aligned}
$$

e.

$$
\begin{aligned}
& \text { int } x=172 \frac{4}{5} \\
& \text { ext } x=7.2 \\
& 7.2=\frac{360}{n} \\
& n=50
\end{aligned}
$$

\#5 Given: PENTA is a regular pentagon Prove: $\triangle P N T$ is isos.

1. PENTA is a reg. polygon
2. Given

3. $\overline{P E} \cong \overline{E N} \cong \overline{P A} \cong \overline{A T}$
4. If reg. polygon \rightarrow all sides \cong
5. $\Varangle E \cong \Varangle A$
6. $\triangle P E N \cong \triangle P A T$
7. $\overline{P N} \cong \overline{P T}$
$6 \triangle P N T$ is isIs.
8. If reg. polys on \rightarrow all $4 i s \cong$
9. SAS
10. $C P C T C$
11. If at least 2 sides of a $\Delta \cong$ $\rightarrow \Delta$ is isos
\#6

\#7 Un an equiangular polygon, the measure of each ext. \Varangle is 25% of the measure of each int. 4. What is the name of the polygon.
ext $x=x$
$x+4 x=180$
$36=\frac{360}{n}$
int $x=4 x$
$5 x=180$
$x=36$
$n=10$
DECAGON
\#10

$$
\begin{array}{rlrl}
5040 & =180(n-2) & \frac{5040}{30}=168^{\circ} \\
28 & =n-2 \\
30 & =n &
\end{array}
$$

\# 11
The sum of a polygon's angle measure is nine times the measure of an exterior angle of a regular hexagon. What is the polygons name?

$$
\begin{aligned}
180(n-2) & =9\left(\frac{360}{6}\right) \\
180(n-2) & =540 \\
n-2 & =3 \\
n & =5 \quad \text { Pentagon }
\end{aligned}
$$

\#13
Always, Sometimes, Never
a. If the number of sides of an equiangular polygon is doubled, the measure of each exterior angle is halved \mathbf{A}
b. The measure of an exterior angle of a decagon is greater than the measure of an exterior angle of a quadrilateral S
c. A regular polygon in equilateral
d. An equilateral polygon is regular S
e. If the midpoints of the sides of a scalene quadrilateral are joined in order, the figure formed is equilateral S
f. If the midpoints of the sides of a rhombus are joined in order, the figure formed is equilateral but not equiangular N
\# 14 Given: ABCDEF is a reg hexagon Prove: ACDF is a rectangle

1. $A B C D E F$ is a reg hex
2. $\overline{A B} \cong \overline{B C} \cong \overline{D E} \cong \overline{E F}$
3. $\triangle 1 \cong \not \cong 2$
4. $\triangle A B C \cong \triangle D E F$
5. $\overline{A C} \cong \overline{D F}$
6. $\overline{A F} \cong \overline{C D}$
7. ACDF is a \square
8. Draw $\overline{A D}$ and $\overline{F C}$
9. $\Varangle A F E \cong \Varangle C D E$
$10 \Varangle E F D \cong \Varangle E D F$
10. $\& A F D \cong \Varangle C D F$
11. $\overline{F D} \cong \overline{F D}$
12. $\triangle A F D \cong \triangle C D F$
13. $\overline{A D} \cong \overline{F C}$
14. ACDF is a \square
15. Given

16. If reg. hex \rightarrow all sides \cong
17. If reg. hex \rightarrow all \&is \cong
18. $S A S$
19. CPCTC
20. Same as 2
21. If Both pairs of opp sides $\cong \rightarrow \square$
22. 2 pts determine a line
23. Same as 3
24. If $\Delta \Delta \rightarrow \Delta$
25. Subtraction prop.
26. Reflexive prop.
B. GAS

14 CPCTC.
15. If a \square has \cong dings \rightarrow
\#17 See semi-octagon

$$
\begin{aligned}
& m \npreceq E=3 x+3 y+9 \\
& m \nleftarrow A=2 x+y-4.5
\end{aligned}
$$

$$
\text { Find } x \text { and } y
$$

$\frac{1}{2}$ Octagon

$$
\begin{aligned}
& \operatorname{ext} \not \subset=\frac{360}{8}=45^{\circ} \\
& \text { int } \Varangle=135^{\circ}
\end{aligned}
$$

$$
\begin{array}{ll}
3 x+3 y+9=135 & 2 x+y-4.5=675 \\
3 x+3 y=126 & 2 x+y=72
\end{array}
$$

$$
\begin{aligned}
& 3 x+3 y=126 \Rightarrow 3 x+3 y=126 \\
&-3(2 x+y=72) \Rightarrow-6 x-3 y=216 \\
&-3 x=-90 \\
& x=30 \\
& y=12
\end{aligned}
$$

