Notes Key

Wednesday, December 10, 2014 7:36 AM

7.3 Notes

/.3 - Keiationsnips involving Polygons

Today's Objective: To identify patterns and discover new formulas that apply to polygons

relationships/patterns? why are formulas important (push for 1 n-gons)

Polygon Name	# of sides (n)	# of triangles	Sum of interior angles
triangle	3	1	180
quadrilateral	4	2	360
pentagon	5	3	540
hexagon	6	4	720
heptagon	7	5	900
n -	n	n-2	180(n-2)
gon			1

Sum of Exterior Angles
(one per vertex)
360
360
360
360
360
360

Summarize:

Sum of interior angles of a polygon (n-gon):

Sum of exterior angles of a polygon (n-gon):

Let's explore the sum of the exterior angles:

- 15 5 cases enough to recognize a pattern? Important to recognize tuw we came upon 'formula"

What is the sum of the exterior angles (one per vertex)

Think about it:

Is it possible for the sum of the interior angles of a polygon to be 630° If so, how many sides would the polygon have?

$$S_i = 180(n-2)$$

 $630 = 180(n-2)$
 $3.5 = n-2$

For a polygon to be $\frac{630^{\circ}}{}$? $S_i = 180(n-2)$ 630 = 180(n-2) 630 = 180n - 360 630 = 180n - 360

Diagonal Formulas!

Shape Name	# of vertices	# of diagonals from a single vertex	Total number of diagonals
triangle	3	0	0
quadrilateral	4	l	2
pentagon	5	2	5
hexagon	6	3	9
n - gon	n	n-3	n(n-3)

Summarize:

Number of diagonals from a single vertex:

$$D_s = n-3$$

Total number of diagonals in a polygon (n-gon):

$$D = \frac{n(n-3)}{2}$$

Always, Sometimes, Never

Its there an organized way to all proach

- a. The number of diagonals of a polygon is the same as the number of sides.
- b. As the number of sides of a polygon increases, the sum of the measures of the interior angles of a polygon increases.

Now let's come up with our own, and try to answer as a class!

Always	Sometimes	Never
As the # of sides of a polyon increases, the sum of the measures of the interior angles 7 (b.)	The # of diagonals of a polygon is the same as the # of sides (a.)	

1.3 Practice Problems!

 $S_{i} = 180(n-2)$ The **sum** of the measures of the **interior angles** of a polygon:

 $S_{e} = 360$ The sum of the measures of the *exterior angles* of a polygon:

 $D_{s} = n - 3$ Number of diagonals in a polygon (from a single vertex):

The total number of diagonals in a polygon:

Start each problem with a formula, and then solve!

1) Find the sum of the measure of the

8) Always, Sometimes, Never...

- a. measures of the interior angles of the figure: $S_i = 180(5-2)$ $S_i = 180(3)$ $S_i = 5+0$
- b. measures of the exterior angles of the figure:

- 2) Find the sum of the measures of the interior angles of a 22-gon.
- 3) Find the total number of diagonals in a dodecagon. $D = \frac{12(12-3)}{2} = 6(9) = 54$
- 4) Find the sum of the measures of the exterior angles of a hexagon. $S_e = 360$
- 5) How many sides does a polygon have if the sum of the measures of its angles is 1620?
- 6) What is the name of the polygon that has 54 diagonals? 54 = n(n-3) $108 = n^2 - 3n$ $0 = n^2 - 3n - 108$ 0 = (n-12)(n+9)7) The number of diagonals from a single vertex of a 20-gon. 0 = (n-12)(n+9)
- Ds = 20-3
 - a. As the number of sides of a polygon increases, the number of exterior angles increases.
 - b. As the number of sides of a polygon increases, the sum of the measures of the exterior angles increases.
 - c. As the number of sides of a polygon increases, the number of diagonals increases
 - d. The sum of the interior angles of a polygon is divisible by 180.

	ra!!! No need to print ☺
Practice	:
1)	How many diagonals are there from a single vertex in a pentadecagon?
2)	How many total diagonals are there in a pentadecagon
3)	What is the name of the polygon that has at has 40 diagonals?
4)	What is the sum of the interior angles of a polygon with 102 sides?
Good A	pplets for Reference!!!
http://w http://w	ww.ies.co.jp/math/java/samples/gaikaku.html ww.mathopenref.com/polygonexteriorangles.html