\#4 If $m \angle G=50$
Find $m \not \subset M$

H

$$
\begin{aligned}
x+y & +m \not K M
\end{aligned}=180
$$

\#7 if $w x=18$ Find By

Always, Sometimes, Never
a. The acute angles of a right triangle are complementary
b. The supplement of one of the angles of triangle is equal in measure to the sum A of the other two angles of the triangle
c. A triangle contains two obtuse angles \mathbf{N}
d. If one of the angles of an isosceles triangle is 60 degrees, the triangle is equilateral
e. If the sides of one triangle are doubled to form another triangle, each angle of the second triangle is twice as large as the corresponding angle of the first triangle.
\#12 In $\triangle D E F$, the sum of the measures of $X D$ and $\Varangle E$ is 110 : The sum of measures $\triangle E$ and $\triangle F$ is 150. Find the sum of the measures of $\Varangle D$ and $\Varangle F$.

$$
\begin{gathered}
\Varangle D+\Varangle E+\angle F=180 \\
110+\Varangle F=180 \\
\angle F=70
\end{gathered}
$$

$$
\begin{aligned}
\triangle D+150 & =180 \\
Y D & =30 \\
\triangle D+\angle F & =30+70=100
\end{aligned}
$$

\#1s
The measures of two angles of a triangle are in the ratio of 2:3. If the third angle is 4 degrees larger than the larger of the other two angles, find the measure of the exterior angle at the third vertex.

Small: $2 x$

$$
\begin{aligned}
& 2 x+3 x+3 x+4=180 \\
& 8 x+4=180 \\
& 8 x=176 \\
& x=22
\end{aligned}
$$

med: $3 x$ (66) $8 x+4=180$
Large: $3 x+4$

$$
\text { (70) } \quad \begin{aligned}
8 x & =176 \\
x & =22
\end{aligned}
$$

ext $y=110^{\circ}$
\# 16 Given: $\Varangle A=30^{\circ}, \overline{A B} \cong \overline{A C}$
$\overrightarrow{C D}$ bisects $\triangle A C B$
$\overrightarrow{B D}$ is one of the trisector of $\Varangle A B C$ Find: $4 D$

$$
\begin{aligned}
& \angle D=180-25-37.5=117.5^{\circ} \\
& \angle D=180-50-37.5=925^{\circ}
\end{aligned}
$$

\#17 Given: EFGH is a rectangle

$$
F H=20
$$

$$
J_{1} K_{1} M_{1} O \text { are midpts }
$$

a. What is the perimeter of JKMO
 40
b. What is the most descriptive name for JKMO RHOMBUS
\#18 Given: $\angle P S T=(x+3 y)^{0}$

$$
\begin{aligned}
& \Varangle P=45^{\circ} \quad \Varangle R=(2 y)^{\circ} \\
& \triangle P S R=(5 x)^{\circ}
\end{aligned}
$$

Find m PST

$$
\begin{array}{cc}
5 x+x+3 y=180 & 5 x+2 y+45=180 \\
6 x+3 y=180 & 5 x+2 y=135 \\
-2(6 x+3 y=180) \Rightarrow & -12 x-6 y=-360 \\
3(5 x+2 y=135) \Rightarrow & \frac{15 x+6 y=405}{3 x=45} \\
& \begin{array}{l}
x=15 \\
y=30
\end{array}
\end{array}
$$

\#19 Prove that the midpoint of the hypotenuse of a right triangle is equidistant from all three vertices (Hint: see proof of midline theorem)

Given: $\triangle A C B$ is art. \triangle
$\triangle C$ is a right \npreceq
M is midget of $\overline{A B}$
Prove: $M=\operatorname{dist}$ from A, B, C.

- Extend $\overline{C M}$ to Z so that $\overline{C M} \cong \overline{M Z}$
- so $A C B Z$ is a \square (diagonals bisecteach other)
- ACBZ is a rect ($\square \mathrm{w} / 1$ right 4$)$
- Diagonals of a rectangle are $\tilde{2}$ and bisect each other

$$
\text { so: } \overline{A M} \cong \overline{M B} \cong C M
$$

