pg 213: $\underline{2}, 7,10,11,12,14$
\#2 Given: Pis not the midpt of $\overline{H K}$
$\overline{H J} \neq \overline{J K}$
Prove: $\overrightarrow{J P}$ does not bisect $\Varangle H J K$

Either $\overrightarrow{J P}$ bisects $\Varangle H J K$ or $\overrightarrow{J P}$ does not bisect $X H J K$
Assume: $\overrightarrow{J P}$ bisects $\Varangle H J K$
Then:
$\therefore \Varangle H J P \cong \Varangle K J P$ (deft of bisect)
$\overline{J P} \cong \overline{J P}$ (reflexive)
$\triangle H J P \cong \triangle K J P$ (SASs)
If $\triangle ' S \cong \rightarrow \overline{H P} \cong \overline{P K}$ (CPCTC)
\rightarrow But this contradicts the given that $\overline{H P} \neq \overline{P K}$ \therefore our assumption is false and $\overrightarrow{J P}$ does not bisect 4 HJK
\#7 RECT is a rectangle
a. In terms of a and b find the coordinates of C (2a, 2b)
b. Does $\overline{R C}$ appear to be congruent to $\overline{E T}$

YES
(diagonals are \cong)
\#10 Given: $\overline{P A} \perp \overline{A B}$

Either $\overline{A B} \cong \overline{A C}$ or $\overline{A B}$ 少 $\overline{A C}$
Assume: $\overline{A B} \cong \overline{A C}$
$\overline{P A} \perp \overline{A B}$ so $\triangle P A B$ is a b
$\overline{P A} \perp \overline{P B}$ so $\& P A C$ is a b

$$
\begin{aligned}
& \triangle P A B \cong \triangle P A C \quad(\text { Lis } \cong) \\
& \overline{P A} \cong \overline{P A} \text { (reflexive) } \\
& \triangle P A B \cong \triangle P A C \text { (SASs) } \\
& \Varangle B \cong \triangle C \quad(C P C T C)
\end{aligned}
$$

\subset but this contradicts the given $\Varangle B \neq 4 C$
\therefore the assumption is false $\overline{A B} \cong \overline{A C}$
\# II Given: $\overrightarrow{B D}$ bisects $\triangle A B C$

$$
\triangle A D B \text { is acute }
$$

Prove: $\overline{A B} \neq \neq \overline{B C}$

Ether: $\overline{A B} \cong \overline{B C}$ or $\overline{A B} \rightleftharpoons \overline{\# C}$
Assume: $\overline{A B} \cong \overline{B C}$
tree. $\overrightarrow{B D}$ bisects $\triangle A B C$ so $\triangle A B D \approx \triangle D B C$ (def of bisect)
$\overline{B D} \cong \overline{B D}$ (Reflexive prop)

$$
\begin{aligned}
& \triangle A B D \cong \triangle C B D \quad(S A S) \\
& \Varangle A D B \cong \triangle C D B \quad(C P C T C)
\end{aligned}
$$

$\triangle A D B$ and $\Varangle C D B$ are right \Varangle 's (supp $+\cong$)
\rightarrow but this contradicts the given $\triangle A D B$ is acute \therefore the assumption is false and $\overline{A B} \neq \overline{B C}$
\# 12 Given: © 0
$\overline{H E}$ is not the \perp bisector of $\overline{D F}$
Prove: $\overline{D E} \cong \overline{=} \overline{E F}$

Either $\overline{D E} \cong \overline{E F}$ or $\overline{D E} \neq \overline{E F}$
Assume: $\overline{D E} \cong \overline{E F}$
Then: Draw $\overline{O D}$ and $\overline{O F}$ (2 prs determine a line)
$\overline{O D} \cong \overline{O F}$ ($A \| l$ radiI \cong)
$\overline{H E}$ is the \perp bis. of $\overline{D F}$ LIP 2 pts are equidistant from the endpts of a seg then they determine the \perp bis of the seq)
\rightarrow but given that $\overline{H E}$ is not the \perp bis of $\overline{D F}$ so the assumption is false and $\overline{D E} \neq \overline{D F}$
\#14 Prove that if 2 medians of a Δ are congruent, then the triangle is scalene
Given: $\overline{D B}$ is a median $\overline{C E}$ is a median

$$
\overline{D B} \neq \overline{C E}
$$

Prove: $\triangle A B C$ is scalene

Either $\triangle A B C$ is scalene
Either $\triangle A B C$ is scalene or $\triangle A B C$ is not scalene
Assume: $\triangle A B C$ is not scalene
Then: if it is not scalene then it is iss $w /$ base $\overline{C B}$
so $\overline{A B} \cong \overline{A C}$ (legs $\cong)$
$\angle A C B \cong \Varangle A B C$ (base «'s \cong)
D and E are midpts ($D B$ and CE medians)

$$
\begin{aligned}
& \overline{D C} \cong \overline{E B} \quad \text { (division prop) } \\
& \overline{B C} \cong \overline{B C} \quad \text { (reflexive prop) } \\
& \triangle D C B \cong \triangle E B C \quad \text { (SSS) } \\
& \overline{D B} \cong \overline{C E} \quad(C P C T C)
\end{aligned}
$$

\longrightarrow but the given says $\overline{D B} \not \approx \overline{C E}$, so $\triangle A B C$ is scalene

