1. Find the slope between: $(-3,2)$ and $(4,6)$
$\begin{gathered}(-3,2) \\ (4,6)\end{gathered} \quad m=\frac{6-2}{4+3}=\frac{4}{7}$
2. Find x when the slope between the two coordinates $(5,-3)$ and $(x, 7)$ is $m=1 / 2$

$$
\begin{array}{cl}
(5,-3) & \frac{7+3}{x-5}=\frac{1}{2} \\
(x, 7) & x-5=20 \\
& x=25
\end{array}
$$

4. Determine 2 points that will yield a positive slope and 2 other points that will yield a negative slope. Graph the two lines.

5. Write the equation of a line parallel to $3 x-6 y=18$ and through $(6,-4)$.

$$
\begin{aligned}
-6 y & =-3 x+18 \\
y & =\frac{1}{2} x-3 \\
m & =\frac{1}{2}
\end{aligned}
$$

5. Write the equation of a line through $(8.6,-4.2)$ and $(-3.7$, and 4.23).

$$
\begin{aligned}
& (8.6,-4.2) \\
& (-3.7,4.23)
\end{aligned} \quad m=\frac{4.23+4.2}{-3.7-8.6}=\frac{8.43}{-12.3}=\frac{-281}{410}
$$

$$
y-4.23=\frac{-281}{410}(x+3.7)
$$

6. Write the equation of a line perpendicular to $y=\frac{-2}{3} x+9$ and through the midpoint of a segment with endpoints $(8,4)$ and $(15,-1)$.

$$
\begin{array}{ll}
\text { midpt } & m=\frac{-2}{3} \quad \perp m=\frac{3}{2} \\
(11.5,1.5) & y-1.5=\frac{3}{2}(x-11.5)
\end{array}
$$

7. Find the equation of the line given in the table:

8. Are $(-6,5),(1,7)$ and $(15,10)$ collinear?

$$
m_{A B}=\frac{7-5}{1+6}=\frac{2}{7}
$$

$$
m_{B C}=\frac{10-7}{15-1}=\frac{3}{14}
$$

9. Triangle BAT has vertices located at $\mathrm{B}(-2,7), \mathrm{A}(3,3)$ and $\mathrm{T}(0,-4)$.
a. Find the slope of $\overline{B A} \cdot(-2,7) \quad m=\frac{7-3}{-2-3}=\frac{4}{-5}$
b. Find the equation of the median from A

$$
\begin{aligned}
& (3,3) \mathrm{m}_{\text {med }}=\frac{3-1.5}{3+4}=\frac{1.5}{7}=\frac{3}{14} \quad y-3=\frac{3}{14}(x-3) \\
& (-1,1.5) \mathrm{trmm}^{2}
\end{aligned}
$$

c. Find the equation of the median from T.

$$
\begin{aligned}
& (0,-4) \quad m_{\text {med }}=\frac{5+4}{.5-0}=\frac{9}{.5}=\frac{18}{1} \quad y+4=18(x-0) \\
& (.5,5) \text { from } T
\end{aligned}
$$

d. Find the equation of the altitude from B.

$$
\begin{aligned}
& (3,3) \\
& (0,-4)
\end{aligned} \quad m_{A T}=\frac{3+4}{3-0}=\frac{7}{3} \quad \perp m=-\frac{3}{7} .
$$

$$
y-7=-\frac{3}{7}(x+2)
$$

$$
\begin{aligned}
& y+4=\frac{5}{4}(x-0) \\
& y+4=\frac{5}{4} x
\end{aligned}
$$

f. Find the equation of the line through the midpoints of $\overline{B A}$ and $A T$.
$\begin{aligned} & \text { midpt } \overline{B A}:(.5,5) \\ & \text { midget } \overline{A T}(1.5,-.5)\end{aligned} \quad m=\frac{5+.5}{.5-1.5}=\frac{5.5}{-1}=-11 \quad y-5=-11\left(x-\frac{1}{2}\right)$
g. Find the equation of the line parallel to $\overline{B A}$ and through T.

$$
(-2,7) \quad m=\frac{7-3}{-2-3}=\frac{4}{-5}
$$

$$
y+4=\frac{4}{-5}(x-0)
$$

