Geometry Honors

$$
\begin{aligned}
& \overline{A B} \cong \overline{B C} \\
& \overline{A D} \cong \overline{C D}
\end{aligned}
$$

Given:
F is the midpoint of $\overline{A D}$
G is the midpoint of $\overline{C D}$
Prove: BD is the \perp bisector of $\overline{\mathrm{FG}}$

Reasons

1. $\overline{A B} \cong \overline{B C}$.
2. $\overline{A D} \cong \overline{C D}$.
3. F is the midpt. of $\overline{A D}$
4. Gas the midpt of $\overline{C D}$
5. $\overline{B D} \perp$ bisector of $\overline{A C}$
b. $\overline{K A} \cong \overline{K C}$
6. Draw $\overline{K F}$ and $\overline{K G}$

ع. $\Varangle 1 \cong \Varangle 2$
9. $\overline{A F} \cong \overline{C G}(S$
10. $\triangle A F K \cong \triangle C G K$
11. $\overline{K F} \cong \overline{K G}$ ®
12. $\overline{F D} \cong \overline{D G}$ \square
1 Given
2." "
$3 . "$
$4 . "$ from the endpts of a seg endpts of seg
7. 2 pts determine a line
8. If $\underset{\Delta}{ } \rightarrow \Delta$

9 Division prop.
10. SAS
11. CPCTC
12. Same as 9
5. If 2 points are equidistant \rightarrow determine the \perp bis. of reg.
6. If a pt. lies on the \perp bis \rightarrow it is equidistant from the

13 Same as 5

1. Given: \quad| $\overline{P C} \cong \overline{B R}$ |
| :--- |
| |
| |
| |
| |
| |
| |
| $B Q \cong \overline{Q R} \cong \overline{C U}$ |

Prove: $\quad \overline{T S} \cong \overline{U S}$

1. $\overline{P C} \cong \overline{B R}$
2. $\overline{P Q} \cong \overline{Q R}$ (s)
3. $\overline{B T} \cong \overline{C U}$
4. $\overline{P B} \cong \overline{C R}$
5. $41 \cong 4^{2}$
6. $\triangle Q P B \cong \triangle Q R C$
7. $\Varangle 3 \cong \times 4$
8. $\Varangle 3$ supp. ± 5 44 supp 46
9. $45 \cong 46$ A
10. $\triangle P B T \cong \triangle R C U$
11. $42 \cong 48$
12. $\overline{P S} \cong \overline{R S}$
13. $\overline{P T} \cong \overline{R U}$
14. $\overline{T S} \cong \overline{U S}$
15. Given
2." "
3." "
16. Subtraction prop
17. If $\Delta \Delta \rightarrow \Delta$
18. SAS

7 CPCTC
8. If 2 xis form a str. 4
\rightarrow xis supp.
9 If 2 4's are supp.to \cong Xis \rightarrow xis \cong
10. SAS
11. CPCIC
12. If $\Delta \rightarrow \Delta$

13 CPCTC
14. Suptraction prop.

