Section 3.7 pgs. 152-155 \#2, 5, 8, 12, 15, 19, 22, 25
\#2 Given: $\Varangle K R M \cong \Varangle P R O$

$$
\overline{K R} \cong \overline{P R}
$$

Prove: $\overline{R M} \cong \overline{R O}$

\#5 Given: $\overline{F H} \cong \overline{G J}$
$\triangle F K J$ is isosceles with $\overline{F K} \cong \overline{J K}$
Prove: $\triangle F K H \cong \triangle J K G$

Statements
Reasons
1.) $\overline{F H} \cong \overline{G J}$
2.) $\triangle F K J$ isos, $\overline{F K} \cong \overline{J K}(S)$
3.) $\angle H F K \cong \angle G J K$
4.) $\triangle F K H \cong \triangle J K G$
1.) Given
2.) Given
3.) If $\Delta x \rightarrow \Delta$
4.) $\operatorname{SAS}(1,3,2)$
\#8 Given: $m<P+m<R<180$

$$
P Q<Q R
$$

Write an in equality to describe

$$
\begin{array}{rlrl}
m<P+m & <R<180 & P Q & <Q R \\
7 x-18+4 x & <180 & 4 x & <7 x-18 \\
11 x-18 & <180 & -3 x & <-18 \\
11 x & <198 & x & >6 \\
x & <18 & &
\end{array}
$$

\#12 Given: $\odot Q$

$$
\begin{aligned}
& \overline{P S} \perp \overline{S R} \\
& \angle P=36^{\circ}
\end{aligned}
$$

Find a.) $\angle P S Q 36^{\circ}$
b) $<R \quad 54^{\circ}$

\# 15

$$
\begin{aligned}
& \overline{H K} \cong \overline{J M} \\
& \overline{G J} \cong \overline{J K} \\
& \overline{O K} \cong \overline{J K}
\end{aligned}
$$

$\overline{G J}$ and $\overline{O K}$ are \perp to $\overline{H M}$
Prove: $\triangle F H M$ is isosceles

Reasons
1.) $\overline{H K} \cong \overline{J M}$
2.) $\overline{G J} \cong \overline{J K}$
3.) $\overline{O K} \cong \overline{J K}$
4.) $\overline{G J} \cong \overline{O K}$
(S)
5.) $G J$ and $O K$ are $\perp \overline{H M}$
6.) $\angle G J H$ is aright 4
7.) \angle OKM is a right $\&$
8.) $\angle G J H \cong \angle O K M$ (A)
9.) $\overline{H J} \cong \overline{K M}$
10.) $\triangle H J G \cong \triangle M K O$
11.) $\angle H \cong \angle M$
$12 \Delta F H M$ is isosceles
1.) Given
2.) Given
3.) Given
4.) Transitive (1f 2 segs are \cong to the same seg \rightarrow segs \cong)
5.) Given
6.) If 2 segs are $\perp \rightarrow$ form a right \nsucc
7.) Same as 6.
8.) If $2 \not \Varangle 1 s$ are right $\Varangle 1 s \rightarrow \not \subset 1 s \cong$
9.) If the same seg. is subrracted from 10.) $\operatorname{SAS}(4,8,9)$ segs \rightarrow diffs. are \cong
11.) CPCTC
12.) If a Δ has at least $2 \cong \not \approx$'s $\rightarrow \Delta$ is isosceles
\#19 Given: $\overline{H J} \cong \overline{M K}$

$$
\Varangle H J K \cong \Varangle M K J
$$

Conclusion: \triangle JoK is isos.

$$
\begin{align*}
& \text { 1. } \overline{H J} \cong \overline{M K} \text { (s) } \\
& \text { 2. } \Varangle H J K \cong \Varangle M K J \\
& \text { 3. } \overline{J K} \cong 丁 K ~(S) \tag{5}\\
& \text { 4. } \triangle H J K \cong \triangle M K J \\
& \text { 5. } \Varangle 1 \cong \Varangle 2
\end{align*}
$$

6. \triangle JOK is isos.
7. Given
8. Given
9. Reflexive Prop.
10. $\operatorname{SAS}(1,2,3)$
11. CPCTC
12. If at least 2 xis of $a \Delta$ are $\cong \rightarrow \Delta$ is isos.
\#22 Given: $\overline{F G} \cong \overline{J H}$

$$
\Varangle F G H \cong \Varangle J H G
$$

Conc: $\triangle F K J$ is isos.

$$
\begin{aligned}
& \text { \#25 } \triangle F E D \text { is equilateral } \\
& \widehat{G E} \perp \overline{D E} \\
& m \Varangle F E G=x+y \\
& m \not \subset D=3 x-6 \\
& m \not \subset F=6 y+12 \\
& 3 x-6=6 y+12 \\
& x+y+3 x-6=90 \\
& 3 x-6 y=18 \\
& 4 x+y=96 \\
& 3 x-6 y=18 \Rightarrow 3 x-6 y=18 \\
& 6(4 x+y=96) \Rightarrow \frac{24 x+6 y=576}{27 x=594} \\
& x=22 \\
& 4(22)+y=96 \\
& 88+y=96 \\
& y=8 \quad \angle F=60^{\circ}
\end{aligned}
$$

