\#6, 8 - 10, 12
\#6 Given: $\angle 1$ is comp. to <2 <3 is comp to <4

$$
\angle 1 \cong \angle 3
$$

Conclusion: $\overline{A B} \cong \overline{C D}$

1.) $\angle 1$ is comp to <2
2.) <3 is comp. to <4
3.) $<1 \cong \angle 3$
4.) $<2 \cong \angle 4$
(A)
5.) $\angle A B C \cong \angle D C B$ (A)
6.) $\overline{B C} \cong \overline{B C}$
7.) $\triangle A B C \cong \triangle D C B$
8.) $\overline{A B} \cong \overline{C D}$
\#8 Given: $\angle 9 \cong 410$

$$
\angle G F H \cong \angle H J G
$$

Conclusion: $\overline{F G} \cong \overline{J H}$

Reasons

Statements
1.) $\angle a \cong \overline{\bar{J}} \ll 10$
2) $49=$ all ar. V.A
2. $59<10 \xlongequal{3}=42$
4.) $\angle 11 \cong 42$
5.) $\angle G F H \cong \angle H J G$
6.) $\angle G F J \cong \angle H J F(A)$
7.) $\overline{F J} \cong \overline{\equiv J}$
8.) $\triangle G F J \cong \triangle H J F$
a) $\overline{F G} \cong \overline{J H}$
1.) Given
-55 assumed
2. Vert. \Varangle 's \cong
2.) Sameas 2.
4.) Transitive prop. (If 2 ぬ's are $\cong+0 \cong$ ※'s
5.) Given
6.) Addition prop
7.) Reflexive prop.
8.) ASA $(4,7,6)$
a.) $C P C T C$
\#9 Given: $\overline{Y w}$ bisects $\overline{A x}$

$$
\begin{aligned}
& \angle A \cong \angle X \\
& \angle 5 \cong \angle 6
\end{aligned}
$$

Conclusion: $\overline{Z W} \cong \overline{Y W}$

$$
\begin{array}{l|l}
& \\
\hline & 2)
\end{array}
$$

\#10 Given: B is the midpt of $\overline{A C}$ E is the midpt of $\overline{A D}$

$$
\begin{aligned}
& \Varangle 7 \cong \Varangle 8 \\
& \Varangle E C D \cong \not \approx B D C
\end{aligned}
$$

Prove: $\overline{A C} \cong \overline{A D}$

l. Given
2. Given
3. Given
4. Assumed
5. If 2 xis form a str. $\psi \rightarrow$ xis supp
6."
7. If 2 xis are supp to \cong xis \rightarrow xis \cong
8. Given
9. Reflexive property
10. ASA $(7,9,8)$
11. CPCTC
12. If 2 segs are $\cong \rightarrow$ their like multiples are \cong
\#12 Given $\overline{H O} \cong \overline{M O}$
$\overline{J O} \cong \overline{K O}$
$\overline{H J}$ is an altitude of $\triangle H J K$ $\overline{M K}$ is an altitude of $\triangle M K J$

Prove: $\downarrow 1 \cong \nless 2$

了

1. Given
2. Given
3. V.A. are \cong
4. SAS $(2,3,1)$
5. Given
6. If a reg is an alt \rightarrow forms a b with the opp. Side
7. Given
8. Same as 6
9. If 2 女's are right xis

$$
\rightarrow x \backslash s \cong
$$

10. CPCTC
II. If $2 \cong \not \subset$ is are subtracted from $2 \cong$ xis \rightarrow differences are \cong
