pg. 136-137 \#11, 14
pg. 139-140 \#1-5
\#" Given: $\overrightarrow{D F}$ bisects $\triangle C D E$ $\overrightarrow{E F}$ bisects $\propto C E D$
G is the midpt of $\overline{D E}$
$\overline{D F} \cong \overline{E F}$
Prove: $\triangle C D E \cong \triangle C E D$

1. $\overrightarrow{D F}$ bisects $¥ C D E$
2. $\overrightarrow{E F}$ bisects $\Varangle C E D$
3. Gif the midpt of $\overline{D E}$
4. $\overline{D G} \cong \overline{G E}$ ©
5. $\overline{D F} \cong \overline{F E}$ (S

6 Draw $F G$
7. $\overline{F G} \cong \overline{F G}$ (S
8. $\triangle D F G \cong \triangle E F G$
a. $\Varangle F D G \cong \triangle F E G$
10. $\triangle C D E \cong \Varangle C E D$

1. Given
2. Given
3. Given
4. If apt is a midpt \rightarrow divides the seg. into $2 \cong \mathrm{seg} \mathrm{s}$
5. Given

62 pts determine a line
7. Reflexive prop
8. SSS $(4,5,7)$

9 CPCTC
10. If $2 x$ is are $\cong \rightarrow$ their like multiples are \cong (If $2 \cong$ «'s $\times 2 \rightarrow$ products \cong)
 Perimeter of $\triangle A O P=80$ $O C+D P=16$
$\overline{C D}$ is 2 units longer than $\overline{O C}$
$A O+A P+O C+C D+D P=\underset{\triangle A O P}{\text { Perimeter of }}$

Let $O C=x$
$D P=16-x$ $C D=x+2$

$$
\text { because all radiiare } \begin{aligned}
& O D=O A=x+x+2 \\
&=2 x+2 \\
& P C=P A=x+2+16-x \\
&=18 \\
&=x+18+2 x+2=80 \\
& x+x+2+16-x+0 \\
& 3 x+38=80 \\
& 3 x=42 \\
& x=14 \\
& \\
& O B=30 \quad O B+B P=30+18 \\
& B P=18
\end{aligned}
$$

pgs. 139-140 \#1-5
\#1 Given: $\overline{A B} \cong \overline{D C}$

$$
\overline{A C} \cong \overline{D B}
$$

Prove: $\triangle A B C \cong \triangle D C B$

StatEmEnts	
1.) $\overline{A B} \cong \overline{D C}$	(s)
2.) $\overline{A C} \cong \overline{D B}$	(s)
3.) $\overline{B C} \cong \overline{B C}$	(s)
4.) $\triangle A B C \cong \triangle D C B$	

Reasons
1.) Given
2.) Given
3.) Reflexive property
4.) $\operatorname{SSS}(1,2,3)$
\#2 Given: $\angle F G H$ is a right \angle $\angle J H G$ is a right \angle

$$
\overline{F G} \cong \overline{J H}
$$

Prove: $\triangle F G H \cong \triangle J H G$

$\frac{\text { Statements }}{\text { 1.) } \angle F G H \text { is a right } \Varangle}$
2) $\angle J H G$ is a right $\not \subset$
3.) $\angle F G H \cong \angle J H G$
(A)
4.) $\overline{F G} \cong \overline{J H}$
(S)
5.) $\overline{G H} \cong \overline{G H}$
6.) $\triangle F G H \cong \triangle J H G$

Reasons
1.) Given
2.) Given
3.) If 2 x's are rignt $\chi^{\prime} \rightarrow$ 女's \cong
4.) Given
5.) Reflexive property
6) $\operatorname{SAS}(4,3,5)$
\#3 Given: $\overline{P M} \cong \overline{R M}$

$$
\angle S P M \cong \angle O R M
$$

Prove: $\triangle P S M \cong \triangle R O M$

Statements
1.) $\overline{P M} \cong \overline{R M}$
2.) $\angle S P M \cong \angle O R M ~ © ~$
3) $\angle M \cong \angle M$
4.) $\triangle P S M \cong \triangle R O M$

Reasons

1) Given
2.) Given
3.) Reflexive property
4.) $\operatorname{ASA}(2,1,3)$
\#4 Given: $<1 \cong \angle 3$

$$
\angle 2 \cong \angle 4
$$

Conclusion: $\overline{B C} \cong \overline{E D}$

$\begin{aligned} & \text { Statement } \\ & \text { 1.) } \angle 1 \cong \angle 3 \\ & \cong<4\end{aligned}$
2.) $\angle 2 \cong \angle 4$
3.) $\angle B C D \cong \angle E D C$ (A)
4.) $\overline{C D} \cong \overline{C D}$
5.) $\triangle B C D \cong \triangle E D C$
6.) $\overline{B C} \cong \overline{E D}$

Reasons
1.) Given
2.) Given
3.) Addition property
4.) Reflexive property
5.) ASA $(2,4,3)$
6) $\triangle P C T C$

Given: $\begin{aligned} \overline{J H} & \cong \overline{K H} \\ \overline{H G} & \cong \overline{1 H M} \\ \times 5 & \cong \boxed{~ K ~}\end{aligned}$
Conc: $\triangle J H G \cong \triangle K H M$

1. $\overline{J H} \cong \overline{K H}$
2. $\overline{H G} \cong \overline{H M}$ 回
3. $\triangle 5 \cong \triangle 6$
4. $\Varangle J H G \cong \Varangle \mathrm{KHM}$ 田
5. $\triangle J H G \cong \triangle K H M$
6. Given
7. Given
8. Given
9. Given
10. If the same \rightarrow sums are is added to \cong «.s
11. SAS $(1,4,2)$
