pgs. 127-128 \#3, 8, 9, 12, 13, 16, 18, 20, 21
\#3 Given: $\odot 0$
$\overline{R O} \perp \overline{M P}$

$$
\text { Prove: } \overline{M R} \cong \overline{P R}
$$

Statements
1.) $\odot 0$
2.) $\overline{M O} \cong \overline{P O}$
3.) $\overline{R O} \perp \overline{M P}$
4.) \angle ROM is a right \Varangle
5.) $\angle R O P$ is a right \Varangle
6.) $\Varangle R O M \cong \Varangle R O P$
7.) $\overline{R O} \cong \overline{R O}$
8) $\triangle R O M \cong \triangle R O P$
9) $\overline{M R} \cong \overline{P R}$
\#8 $\triangle A B C \cong \triangle D E F$

$$
\begin{aligned}
& \angle A=90^{\circ} \\
& \angle B=50^{\circ} \\
& \angle C=40^{\circ} \\
& m \angle E=12 x+30 \\
& m \angle F=\frac{y}{2}-10 \\
& m \angle D=\sqrt{2}
\end{aligned}
$$

Solve for x, y, and z.

Reasons
1.) Given
2.) Radii of a \odot are \cong
3.) Given
4.) If 2 segs $\perp \rightarrow$ form a rt. \nVdash
5.) Same as 4 .
6) If 2 is are tis \rightarrow \&'s \cong
7.) Reflexive Property
8) $\operatorname{SAS}(2,6,7)$
9) $C P C T C$

$$
\begin{array}{r}
12 x+30=50 \\
\frac{12 x}{12}=\frac{20}{12} \\
x=\frac{5}{3}
\end{array}
$$

$$
y=100
$$

\#9 Given: $\stackrel{\rightharpoonup}{F H}$ bisects LGFJ and $\angle G H J$
conclusion: $\overline{F G} \cong \overline{F J}$

Statements
1.) $\overrightarrow{F H}$ bisects $<G F J$
2.) $<1 \cong \angle 2$
3.) $\overrightarrow{F H}$ bisects $<G H J$
4.) $\angle 3 \cong \angle 4$
5.) $\overline{F H} \cong \overline{F H}$
6) $\triangle G F H \cong \triangle J F H$
7.) $\overline{F G} \cong \overline{F J}$

Reasons
1.) Given
2.) If a line bisects a seg. $\rightarrow \div$ seg into $2 \cong$ segs.
3.) Given
4.) Same as 2
5.) Reflexive property
6) $\operatorname{ASA}(2,5,4)$
7.) CPCTC
\#12 Given: H is the midpt of $\overline{G J}$
M is the midpt of $\overline{O K}$

$$
\begin{gathered}
\overline{G O}=\overline{J K} \\
\overline{G J} \cong \overline{O K} \\
\angle G \cong \angle K \\
O K=27 \\
m \angle G O H=x+24 \\
m \angle G H O=2 y-7 \\
m \angle J M K=3 y-23 \\
m \angle M J K=4 x-105
\end{gathered}
$$

$$
\triangle G H O \cong \triangle K M J
$$

Find $m \angle G O H=67^{\circ}$
$\begin{aligned} 3 y-23 & =2 y-7 \\ y & =16\end{aligned}$

$$
y=16
$$

$$
\begin{aligned}
4 x-105 & =x+24 \\
3 x & =129 \\
x & =43
\end{aligned}
$$

\#13 Given: $\angle A \cong \angle E$

$$
\begin{aligned}
& \overline{A B} \cong \overline{B E} \\
& \overline{F B} \perp \overline{A E} \\
& \angle 2 \cong \angle 3
\end{aligned}
$$

$$
\text { PROVE: } \overline{C B} \cong \overline{D B}
$$

Statements
(A)
1.) $\angle A \cong \angle E$
2.) $\overline{A B} \cong \overline{B E}$
3.) $\overline{F B} \perp \overline{A E}$
4.) $\Varangle 2 \cong \Varangle 3$
5.) $\Varangle A B E$ is a straight \Varangle
6.) $\Varangle 1$ is supp to $\Varangle 2$
7) 43 is supp. to 44
8.) $\Varangle 1 \cong \Varangle 4$
9.) $\triangle C A B \cong \triangle D E B$
10.) $\overline{C B} \cong \overline{D B}$

Reasons
1.) Given
2.) Given
3.) Given
4.) Given
5.) Assumed
6) If 2Δ is form a straight $x \Rightarrow \Delta$ is supp.
7.) "
8.) If 2 sis are supp to \cong ھis \rightarrow \&is \cong
9.) $A S A(1,2,8)$
10.) $C P C T C$
\#16 Given $\Varangle 7 \cong \Varangle 8$ Prove:

$$
\overline{Z y} \cong \overline{w x} \quad x W \cong x y
$$

1. $\Varangle 7 \cong \Varangle \varepsilon$
2. $\overline{Z Y} \cong \overline{W X}$
3. $\overline{2 x} \cong \overline{Z x}$
4. $47 \cong 49$
$5410 \cong 48$
5. $49 \cong 410$
6. $\Delta W X Z \cong \Delta Y Z X$
7. $\overline{Z Y} \cong \bar{W} X$
8. Given

9. Given
10. Reflexive property
11. V.A are $\cong \quad \Rightarrow \angle 7$ and $\angle 9$ areV.A
5."
12. If 2Δ 's are \cong to the same \Varangle $\rightarrow \Delta i s \cong$ (Transitive
13. $\operatorname{SAS}(2,6,3)$
14. CPCTC
\# 18 Given. $\overline{K G} \cong \overline{G J}$

$$
\Varangle 2 \cong \Varangle 4
$$

41 is comp. to $\triangle 2$
43 is comp to $\varangle 4$
$4 F G J \cong \triangle H G K$

conc: $\overline{F G} \cong \overline{H G}$

1. $\overline{K G} \cong \overline{G J}$
2. $\mathrm{x} 2 \cong \measuredangle 4$
3. 41 is comp to $\Varangle 2$
4. 43 is comp to 44
5. $\Varangle 1 \cong \triangle 3$
6. $\Varangle F G J \cong \measuredangle H G K$
$6.545 \cong$ A 6
$7 \triangle F K G \cong \triangle H J G$
7. $\overline{F G} \cong \overline{H G}$

\#21 Given: $\overline{A E} \cong \overline{F C}$ $\overline{F B} \cong \overline{D E}$
$\triangle C F B \cong \triangle A E D$
Prove: $\Varangle 1 \cong x_{2}$

A

1. Given
2. $\overline{A E} \cong \overline{F C}$
3. $\triangle C F B \cong \Varangle A E D$
4. $\overline{A F} \cong \overline{E C}$
$5 \Varangle A E F$ is a straight \Varangle
5. $\triangle A E D$ is supp to $\triangle 3$
6. $\triangle C F B$ is supp to $\Varangle 4$
g. $\Varangle 3 \cong \times 4$ (A
7. $\triangle D E C \cong \triangle B F A$
8. $\triangle 1 \cong \triangle 2$

2 Given
3. Given
4. If the same seg is added to
\cong segs then the sums \cong
5. Assumed
6. If 2 iss form a straight $\psi \rightarrow \Delta$ is supp
7. "
8. If 2Δ 's are supp to $\cong \star ' s \rightarrow \Delta$'s \cong
9. $\operatorname{SAS}(2,8,4)$
10. CPCTC

