1. Given $f(x)=4^{x}$, evaluate:

b. $f\left(\frac{1}{2}\right)$
c. $f\left(-\frac{3}{2}\right)$

$$
2
$$

2. Write the equation of a logistic function that has a limit to growth of 84 , an initial value of 4 and goes through the point $(5,21)$.

$$
y=\frac{84}{1+20 \cdot .68^{x}}
$$

3. The half-life of a substance is 4 minutes. The original mass is 100 grams. How much of the substance remains after 15 minutes?

$$
y=100 \cdot\left(\frac{1}{2}\right)^{t / 4}
$$

4. Write the equation of a logistic function that has a limit to growth of 84 , an initial value of 4 and goes through the point $(5,21)$.

5. Write the equation of an exponential function that goes through $(0,2)$ and $(3,12)$. (Round b-value to nearest hundredths.)

$$
\begin{array}{ll}
y=2 \cdot b^{x} & y=2 \cdot 1.82^{x} \\
12=2 \cdot b^{3} & y
\end{array}
$$

6. Evaluate:
a. $\quad \log _{2} 16$

b. $\quad \log 0.01$

c. $\ln e$

d. $\ln 1$

7. Use the function $f(x)=\frac{10}{1+2 e^{-0.1 x}}$ to identify the following properties of its graph:
a. Y-intercept:

b. Asymptotes:

10,0
c. Y-coordinate of symmetry:
8. You deposit $\$ 500$ in an account that pays 8% annual interest compounded yearly.
a. Write an equation representing the total amount of money in your account in years.

$$
y=500(1.08)^{t}
$$

b. What is the account balance after 6 years?

$$
\approx^{4} 793.44
$$

c. How much would the $\$ 500$ be worth after 35 years?

$$
\approx 7392.67
$$

9. Evaluate the following without a calculator:
a. $\log _{\frac{1}{2}} 8$
b. $\quad \log \frac{1}{\sqrt{1000}}$
c. $\ln \sqrt[3]{e^{4}}$
$\frac{1}{2}^{x}=8$

$$
2^{-x}=2^{3}
$$

10. Evaluate the following with a calculator:
a. $\log 217$

b. $\quad \log (-15)$
c. $\ln (0.345)$

$$
-1.06
$$

11. Describe how to transform the graph $f(x)=\ln x$ into the graph $g(x)=-\frac{1}{2} \ln (4 x-1)+3$.

- Vertical -
- shank BAFO y_{2}
-up 3

