Section 2.8
pg. 102: 1, 2, 3, 7, 12, 13, 15
pg. 97: $\underline{5}, \underline{7}, \underline{12}$
\# 1 Name 3 pairs of opposite rays $\overrightarrow{F E}, \overrightarrow{C C}$
$\overrightarrow{F D, F A}$
$\overrightarrow{B A}, \overrightarrow{B C}$

Name 2 pairs of vertical \&us
$\triangle E F A$ and $4 C F D$
\& EFD and $\& C F A$
\#2 Given $\Varangle 1=60^{\circ} 32^{\prime}$
Find: a. $\boldsymbol{4 2}=119^{\circ} 28^{\circ}$

$$
\begin{aligned}
& \text { b. } 43=60^{\circ} 32^{\prime} \\
& \text { c. } 44=119^{\circ} 28^{\prime}
\end{aligned}
$$

\#3 Given. $\begin{aligned} 45 & =(2 x+7)^{\circ} \\ 46 & =(x+25)\end{aligned}$

$$
\begin{aligned}
2 x+7 & =x+25 \\
x & =18 \\
m 45 & =2(18)+7 \\
& =36+7 \\
& =43
\end{aligned}
$$

\#7 is this possible?

$$
\begin{aligned}
4 x & =3 x-3 \\
x & =-3
\end{aligned}
$$

No- you cannot have
a negative angle
\#12 Angles 4.5.6 are in a ratio of $2: 5: 3$

\#13 If a pair of vertical xis are supp. what can we conclude about the angles
They are $\cong \rightarrow$ Theymustberight x is $\left(90^{\circ}\right)$
\#15 Find $m \times 1$

$$
\begin{gathered}
x^{2}-6 x=\frac{1}{2} x+42 \\
x^{2}-\frac{12}{2} x=\frac{1}{2} x+42 \leftarrow \begin{array}{c}
\text { common } \\
2\left(x^{2}-\frac{13}{2} x-42=0\right) \\
2 x^{2}-13 x-84=0 \\
2 x^{2}+8 x
\end{array} \underbrace{21 x-84=0-2188} \\
2 x(x+4)-21(x+4)=0 \\
(x+4)(2 x-21) \\
x=-4 \text { or } x=\frac{21}{2}
\end{gathered}
$$

$41=180-40$
$=140$

If $x=\frac{21}{2}$
$\left(\frac{21}{2}\right)^{2}-6\left(\frac{21}{2}\right)$
$=189 / 4$
$41=180-189 / 4$
$=132.75$
pg 97
\#5 O is the midpt of $\overline{N P}$ R is the midpt of $\overline{S P}$ $\overline{N P} \cong \overline{S P}$
Conclusion: $\overline{S R} \cong \bar{N} O$

2. R is the midpt. of $\overline{S P}$
3. $\overline{N P} \cong \overline{S P}$
4. $\overline{S R} \cong \overline{N O}$

Reasons

1. Given

2 Given
3. Given
4. If 2 segs are $\cong \rightarrow$ their like divisions are \cong
\#7 Given $\Varangle O M P \cong \not \cong R P M$ $\overrightarrow{M P}$ bisects $\triangle O M R$ $\overrightarrow{P M}$ bisects $\triangle O P R$

Prove. $\Varangle O M R \cong \Varangle O P R$

Statements

 Reasons1. Given
2. Given
3. Given
4. If 2 x's are $\cong \rightarrow$ their like multiples are \cong
\#12 Given. $\Varangle A$ is comp to $\Varangle A D B$ $\Varangle C$ is comp. to $\Varangle C D B$ $\overrightarrow{D B}$ bisects $\Varangle A D C$
conc: $\measuredangle A \cong \Varangle C$

$$
\begin{aligned}
& \text { Statements } \\
& \text { 1. } \triangle A \text { comp to } \Varangle A D B \\
& \text { 2. } 4 C \text { comp to } \Varangle C D B \\
& 3 \overrightarrow{D B} \text { bisects } \Varangle A D C \\
& \text { 4. } \Varangle A D B \cong \Varangle C D B \\
& 5 \Varangle A \cong \Varangle C \\
& \text { Reasons } \\
& 1 \text { Given } \\
& \text { 2. Given } \\
& \text { 3. Given } \\
& \text { 4. If a ray bisects an } \gamma \rightarrow \text { divides } \\
& \text { an } \& \text { into } 2 \cong \text { ais } \\
& \text { 5. It } 2 \text { kif are comp. to } \cong ष 1 s \rightarrow \text { ers } \cong
\end{aligned}
$$

