Section 2.5
pg. 86: $\underline{3}, 6, \underline{7}, \underline{10}, 14,17,19$
\#3 $\overline{P Q} \cong \overline{S R}$

$$
\overline{Q N} \cong \overline{R N}
$$

Conclusion: $\overline{P N} \cong \overline{S N}$

Statements	Reasons
1. $\overline{P Q} \cong \overline{S R}$	1. Given
2. $\overline{Q N} \cong \overline{R N}$	G. Given
3. $\overline{P N} \cong \overline{S N}$	3. 14 segs are added to
	2 \cong segs \rightarrow sums \cong

\#6 Given:

$$
\begin{aligned}
& \overline{G H} \cong \overline{J K} \\
& G H=x+10 \\
& H J=8 \\
& J K=2 x-4
\end{aligned}
$$

$$
\begin{aligned}
J K & =2 x-4 \\
\text { Find: } G J & =24+8 \\
& =32
\end{aligned}
$$

\#7 Given: $\Varangle P N O \cong \Varangle P O N$ $\Varangle 1 \cong \Varangle 2$

Conclusion: $\Varangle 3 \cong \Varangle 4$
If $\cong \Delta$ is are subtracted from $\cong x$ is \rightarrow diffs \cong

\#10 Given. $4 B A D$ is a right \angle $\overline{C A} \perp \overline{A E}$
Prove: $\triangle B A C \cong \triangle E A D$

Statements

1. $\Varangle B A D$ is a right \Varangle
2. $\overline{C A} \perp \overline{A E}$
3. $\Varangle E A C$ is a right \Varangle
4. $\Varangle B A D \cong \angle E A C$
5. $\Varangle B A C \cong \Varangle E A D$

Reasons

1. Given

2 Given
3. If 2 segs are $\perp \rightarrow$ form b
4. If 2 ais are bis \rightarrow ais \cong
5. If the same \Varangle is subtracted from \cong K's \rightarrow diffs \cong
\#14 $\Varangle A$ is comp. to $\Varangle B$ ${ }_{\triangle} C$ is comp to $\nleftarrow B$

$$
\begin{aligned}
& \Varangle A=(3 x+y)^{\circ} \\
& \Varangle B=(x+4 y+2) \\
& \triangle C=(3 y-3)
\end{aligned}
$$

$$
3 x+y+x+4 y+2=90
$$

$$
x+4 y+2+3 y-3=90
$$

$$
4 x+5 y+2=90
$$

$$
x+7 y-1=90
$$

$$
x+7 y=91
$$

Find: $m \& B$

$$
\begin{array}{rlr}
4 x+5 y=88 \Rightarrow & 4 x+5 y=88 \\
-4(x+7 y=91) \Rightarrow & \frac{-4 x-28 y=-364}{-23 y=-276} \\
& y=12 \\
& x B=7+4(12)+2 & x+8(12)=91 \\
=7+48+2 & x=91 \\
= & 57 &
\end{array}
$$

\#17 $\overrightarrow{B F}$ bisects \Varangle DEE
a. Does $\overrightarrow{B F}$ bisect $\Varangle C B A$
b What did you discover about $\angle A B C$ and $\overrightarrow{B F}$

$$
\begin{aligned}
5 x-35 & =3 x+7 \\
2 x & =42 \\
x & =21
\end{aligned}
$$

\#19 Find the measure of the angle formed by the hands of the clock at 5:55

