\#13 OP is tangent to the x axis and the y axis
a. Find an equation of the circle

$$
(x-3)^{2}+(y-3)^{2}=9
$$

b. Find the area of the shaded region

$$
\begin{aligned}
& A_{\square}=3.3=9 \\
& A_{\text {sec }}=\frac{9 \pi}{4} \\
& A_{\text {shad }}=9-\frac{9 \pi}{4} \approx 1.9
\end{aligned}
$$

\#16 The point $(13,9)$ is on a circle centered at $(7,1)$
a. Write an equation of circle

$$
\begin{gathered}
r=\sqrt{(6)^{2}+(8)^{2}}=\sqrt{100}=10 \\
(x-7)^{2}+(y-1)^{2}=100
\end{gathered}
$$

b Area 100π
c. Circumference 20π
d. Coordinates of points directly opposite $(13,9)$ use midpt
e. Write, in point slope form, an equation of the line tangent to the circle $(13,9)$

$$
\pm m=-\frac{3}{4} \quad y-9=-\frac{3}{4}(x-13)
$$

f. distance between $(19,6)$ and center 13 radius g distance between $(19,6)$ and circle $13-10=3$
\#20 Consider the circle represented by $(x-4)^{2}+(y+2)^{2}=50$

$$
\begin{aligned}
& c:(4,-2) \\
& r: 5 \sqrt{2}
\end{aligned}
$$

Let P be the center of the circle and T be a point on chord $A B$ such that $P T$ is perpendicular to $A B$. If $A=(11,-1)$ and $B=(5,-9)$ what is,
a. PT ? $=\sqrt{(4)^{2}+(3)^{2}}$

$$
=\sqrt{25}=5
$$

b. $\mathrm{m}<$ TBA

$$
45^{\circ}
$$

\#23 Find the distance between the lines represented by:
$y=2 x-\not$ and $y=2 x+7$

$$
\begin{aligned}
& \text { P.O.I.: }-\frac{1}{2} x-1=2 x+7 \\
&-8=\frac{5}{2} x \\
& x=-\frac{16}{5} \quad y=\frac{3}{5} \\
& d=\sqrt{\left(0+\frac{16}{5}\right)^{2}+\left(\frac{3}{5}+1\right)^{2}} \\
& d=\sqrt{64 / 5}=\frac{8 \sqrt{5}}{5}
\end{aligned}
$$

\#25 Given the circles represented by:

$$
\begin{array}{cc}
(x+9)^{2}+(y-4)^{2}=52 & c:(-9,4) \\
\text { and } & r: 2 \sqrt{13} \\
(x-12)^{2}+(y-3)^{2}=13 & c:(12,3) \\
& r: \sqrt{13}
\end{array}
$$

a. Find the length of the common internalangent:

$$
\begin{aligned}
& d=\sqrt{(21)^{2}+(1)^{2}} \\
& d=\sqrt{442} \\
& x^{2}+(3 \sqrt{13})^{2}=(\sqrt{442})^{2} \\
& x^{2}+117=442 \\
& \quad x^{2}=325 \quad x=5 \sqrt{13}
\end{aligned}
$$

a. Common external tangent
\#26

$$
\begin{gathered}
x^{2}+(\sqrt{13})^{2}=(\sqrt{442})^{2} \\
x^{2}+13=442 \\
x^{2}=429 \\
x=\sqrt{429}
\end{gathered}
$$

Find the area of the quadrilateral with vertices at $(-3,2),(15,6),(7,12)$, and $(-7,8)$

$$
\left.\left|\begin{array}{rr}
-3, & 2 \\
15, & 6 \\
7, & 12 \\
-7, & 8 \\
-3, & 2
\end{array}\right| \begin{aligned}
& A=\frac{1}{2}|(-18+180+56+-14)-(30+42+-84+-24)| \\
& =\frac{1}{2}|(204)-(-36)| \\
&
\end{aligned} \right\rvert\,
$$

$$
\begin{aligned}
& \text { Arect }= 220 \\
& \begin{aligned}
\text { A quad } & =220 \\
& -12 \\
& -36 \\
& -24 \\
& -28 \\
& 120
\end{aligned}
\end{aligned}
$$

