\#3 Find the center, the radius, the diameter, the circumference, and area of the circle
a. $x^{2}+y^{2}=36$

Center: $(0,0)$
Radius: 6
Diam: 12

$$
\begin{aligned}
& C=2 \pi(6)=12 \pi \\
& A=36 \pi
\end{aligned}
$$

c. $(x+5)^{2}+y^{2}=\frac{9}{4}$

Center: $(-5,0)$
Radius: 3/2
Diameter: 3

$$
\begin{aligned}
& C=2 \pi(3 / 2)=3 \pi \\
& A=9 / 4 \pi
\end{aligned}
$$

b. $(x-3)^{2}+(y+6)^{2}=100$
center: $(3,-6)$
Radius: 10
Diam. 20

$$
\begin{aligned}
& C=2 \pi(10)=20 \pi \\
& A=100 \pi
\end{aligned}
$$

d. ${ }^{3 .} \frac{(x+5)^{2}}{3}+\frac{(y-2)^{2}}{3}=27$

$$
(x+5)^{2}+(y-2)^{2}=81
$$

center: $(-5,2)$
radius: 9
diameter

$$
\begin{aligned}
& C=8 \pi \\
& A=81 \pi
\end{aligned}
$$

\#4 Write equation of circle

$$
x^{2}+y^{2}=25
$$

$(x+4)^{2}+y^{2}=16$

\#5 Consider the equation $(x-3)^{2}+(y+2)^{2}=17$
a. Is $(4,2)$ on the graph

$$
\begin{gathered}
(4-3)^{2}+(2+2)^{2}=17 \\
1^{2}+4^{2}=17 \\
17=17 \text { yes }
\end{gathered}
$$

b. Is $(3,-2)$ on the graph

$$
\begin{gathered}
(3-3)^{2}+(-2+2)^{2}=17 \\
0^{2}+0^{2}=17 \\
0 \neq 7 \text { No }
\end{gathered}
$$

\#6 a. $(x-3)^{2}+(y+1)^{2}=0 \quad$ Point circle
b. $(x+5)^{2}+y^{2}=-100 \quad$ imaginary circle
\#7

\#8 Determine the equation of each circle
a. The center is the origin, and the circle passes through $(0,-5) \quad x^{2}+y=25$
b. The endpoints of a diameter $(-2,1)$ and $(8,25) \quad(x-3)^{2}+(y-13)^{2}=169$
c. The center is $(-1,7)$ and the circle passes through the origin $(x+1)^{2}+(y-7)^{2}=50$
d. The center is $(2,-3)$ and the circle passes through $(3,0) . \quad(x-2)^{2}+(y+3)^{2}=10$
\#9 Undicate whether the point is inside, on, or outside the circle.
a. $(2,5)$;

$$
\begin{aligned}
x^{2}+y^{2} & =29 \\
2^{2}+5^{2} & =29 \\
29 & =29 \\
& \text { ON }
\end{aligned}
$$

c. Origin: $(x-2)^{2}+(y+5)^{2}=16$

$$
\begin{aligned}
(-2)^{2}+(5)^{2} & >16 \\
4+25 & >16 \\
29 & >16 \text { Outside }
\end{aligned}
$$

b. $(3,0)$

$$
\begin{aligned}
& x^{2}+y^{2}=100 \\
&(3)^{2}+(0)^{2}<100 \\
& 9<100 \\
& \text { Uenside }
\end{aligned}
$$

d. $(-2,1)$

$$
\begin{gathered}
x^{2}+(y+6)^{2}=23 \\
(-2)^{2}+(1+6)^{2}=23 \\
4+7^{2}=23 \\
53=23
\end{gathered}
$$

outside
\#13 Find the distance between the points of intersection of the graph of $x^{2}+y^{2}=17$ and $x+y=3$

$$
\begin{gathered}
x^{2}+(3-x)^{2}=17 \\
x^{2}+9-6 x+x^{2}=17 \\
2 x^{2}-6 x-8=0 \\
2\left(x^{2}-3 x-4\right)=0 \\
2(x-4)(x+1)=0 \\
x=4,-1
\end{gathered}
$$

$$
y=3-x
$$

$$
\text { points }(4,-1)
$$

$$
(-1,4)
$$

$$
d=\sqrt{(4+1)^{2}+(4+1)^{2}}
$$

$$
d=\sqrt{5^{2}+5^{2}}
$$

$$
d=\sqrt{50}
$$

$$
d=5 \sqrt{2}
$$

\#14
a. EQuation of tangent to arcle at $(6,8)$

$$
m_{P Q}=\frac{8-4}{6-3}=\frac{4}{3}
$$

$(6,8)$
$(3,4)$

$$
1 m=\frac{-3}{4} \quad y-8=\frac{-3}{4}(x-6)
$$

b. Circumference

$$
\begin{aligned}
& d=\sqrt{(8-4)^{2}+(6-3)^{2}} \\
& d=\sqrt{4^{2}+3^{2}} \\
& d=\sqrt{16+9} \\
& d=\sqrt{25} \\
& d=5
\end{aligned}
$$

c. Dist $\overline{A Q}$

$$
\sqrt{53}
$$

d. Distance from A to circle

$$
\sqrt{53}-5 \approx 2.3
$$

e. Area of shaded sector

$$
\frac{1}{6} \cdot \pi(5)^{2} \approx 13.1
$$

