\#5 The radius of a regular hexagon is 12 .
Find: a. The length of one side 12
b. The apothem $6 \sqrt{3}$
c. The area $A=\frac{1}{2}(6 \sqrt{3})(72)$

$$
=216 \sqrt{3}
$$

\#10 Find the area of an equilateral triangle it the radius of its inscribed circle is 3 .

$$
\begin{aligned}
A & =\frac{1}{2} a P \\
& =\frac{1}{2}(3)(18 \sqrt{3}) \\
& =27 \sqrt{3}
\end{aligned}
$$

\#II Find the area of a regular hexagon if the radius of its inscribed circle is 12 .

$$
\begin{aligned}
A & =\frac{1}{2} a P \\
& =\frac{1}{2}(12)(48 \sqrt{3}) \\
& =288 \sqrt{3}
\end{aligned}
$$

$x=4 \sqrt{3}$

\#15 A circle of radius 12 is circumscribed about each regular polygon below. Find the area of each polygon.
a.

$$
\begin{aligned}
A & =\frac{1}{2}(6)(36 \sqrt{3}) \\
& =108 \sqrt{3}
\end{aligned}
$$

b

$$
A=\frac{1}{2}(6 \sqrt{2})(48 \sqrt{2}) \quad x=6 \sqrt{2}
$$

$$
=3 \sqrt{2}(48 \sqrt{2})
$$

$$
=144(2)
$$

$$
=288
$$

c.

$$
\begin{aligned}
A & =\frac{1}{2} a P \\
& =\frac{1}{2}(6 \sqrt{3})(72) \\
& =216 \sqrt{3}
\end{aligned}
$$

\#16 A circle is inscribed in one regular hexagon and circumscribed about another. If the circle has a radius of 6 , find the ratio of the area of the smaller hexagon to the area of the larger hexagon

$$
\begin{aligned}
A_{\text {Large }} & =\frac{1}{2}(6)(24 \sqrt{3}) \\
& =72 \sqrt{3} \\
A_{\text {small }} & =\frac{1}{2}(3 \sqrt{3})(36) \\
& =54 \sqrt{3}
\end{aligned}
$$

$$
\text { Ratios } \frac{54 \sqrt{3}}{72 \sqrt{6}}=\frac{3}{4}
$$

\#17 Find the area of the shaded region in each polygon.
a.

$$
\begin{aligned}
& A_{D}=6.6 \\
& =36 \\
& A_{\Delta}=\frac{6.3 \sqrt{3}}{2} \\
& =9 \sqrt{3} \\
& A_{\text {shad }}=36-9 \sqrt{3}
\end{aligned}
$$

b.

\#19 a. The span s of a regular hexagon is 30 Find the hexagon's area

$$
\begin{aligned}
& A=\frac{1}{2}(15)(60 \sqrt{3}) \\
& A=450 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x \sqrt{3}}{\sqrt{3}}=\frac{15}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \\
& x=5 \sqrt{3}
\end{aligned}
$$

b. Find the span of a regular hexagon with an area of $32 \sqrt{3}$

$$
\begin{aligned}
A & =\frac{1}{2} a P \\
32 \sqrt{3} & =\frac{1}{2}(x \sqrt{3})(12 x) \\
32 \sqrt{3} & =6 \sqrt{3} x^{2} \\
\frac{16}{3} & =x^{2} \\
\frac{4}{\sqrt{3}} & =x \quad \text { apothem: } \frac{4}{\sqrt{3}} \cdot \sqrt{3}=4
\end{aligned}
$$

$$
x=\frac{5 \sqrt{3}}{6}
$$

$$
A=\frac{1}{2} a P=\frac{1}{2}\left(\frac{s}{2}\right)\left(\frac{12 s \sqrt{3}}{6}\right)=\frac{12 s^{2} \sqrt{3}}{24}=\frac{s^{2} \sqrt{3}}{2}
$$

c.

a. Find the apothem of the regular octagon

$$
\begin{aligned}
& \text { apothem }=5+5 \sqrt{2} \\
& \begin{aligned}
\text { area } & =\frac{1}{2}(5+5 \sqrt{2})(80) \\
& =40(5+5 \sqrt{2}) \\
& =200+200 \sqrt{2} u^{2}
\end{aligned} \begin{array}{l}
\text { or TRIG } \\
\tan 67.5=\frac{y}{5}
\end{array} \\
& y=
\end{aligned}
$$

\#22

