Geo H 10.9
Notes
10.9 Arc Length

$$
1^{\circ}=\frac{1}{360} \text { of a given Circle }
$$

Example 1: Given the circumference of a circle is 18π, find the length of:
a) 35° arc
b) 120° arc

$$
C=2 \pi r \text { or } \pi d
$$

$$
A=\pi r^{2}
$$

Example 2: If the arc length of a circle with radius 10 is 5π, find the circumference and area of the circle and measure of the arc.

$$
\begin{array}{ll}
\begin{array}{ll}
\text { area of the circle and measure of the arc. } \\
\hline \frac{m \overparen{A B}}{360} C & 5 \pi=\frac{m \overparen{A B} \pi}{18} \\
5 \pi=\frac{m \overparen{A B}}{360_{18}^{*}} & 20 \pi \\
& 90 \pi=m \overparen{A B} \pi \\
& 90=m \overparen{A B}
\end{array}
\end{array}
$$

Example 3: Find the perimeter of the following figures - EXACT answers.
a)

$$
C=8 \pi
$$

15
$30+8 \pi$
c)

b)

d)

Example 4: Find the perimeter of each "sector" - the region bounded by arc $A B$ and the radii - EXACT answers.
a)

$$
\begin{aligned}
& \frac{1}{4} \cdot 24 \pi=6 \pi \\
& P=6 \pi+24
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{x \sqrt{3}}{\sqrt{3}}=\frac{9}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& x=\frac{9 \sqrt{3}}{3}=3 \sqrt{3} \\
& \frac{1}{3} \cdot 12 \pi \sqrt{3}
\end{aligned}
$$

Arc $=4 \pi \sqrt{3}$

$$
P=12 \sqrt{3}+4 \pi \sqrt{3}
$$

Example 5: Find arc length of $A B$. The triangles are always equilateral and O is the center of the circle. (Note: none of the diagrams are to scale)

$$
\begin{aligned}
& C=8 \sqrt{3} \pi^{12} \\
& \frac{1}{3} 8 \sqrt{3} \pi=\frac{8 \sqrt{3} \pi}{3}
\end{aligned}
$$

$C=24 \pi$
$\frac{1}{6} \cdot 24 \pi=4 \pi$

12
12

Example 6: Two pulleys are connected by a belt. The pulleys have radii of 14 cm and $\frac{4}{4} \mathrm{~cm}$. The distance between their centers is 20 cm . Find the total length of the belt needed to go around these two pulleys.

$$
\begin{aligned}
10^{2}+x^{2}= & 20^{2} \\
x= & 10 \sqrt{3} \\
& C_{\text {large }}=28 \pi \\
& A L=\frac{2}{3} \cdot 28 \pi=\frac{56 \pi}{3} \\
& C_{\text {Small }}=8 \pi \\
& \text { A. }=\frac{1}{3} \cdot 8 \pi=\frac{8 \pi}{3}
\end{aligned}
$$

