Section 10.6

p. 482: 4, 7, 16, 17, 22-24
\#4

Find: a. $\& P \quad 17^{\circ}$
b. $\triangle P Q R \quad 180-17=\frac{163}{2}=81.5^{\circ}$
\#7

* 16

Find: a. \&P $\frac{162-104}{2}=299$
b. $\quad \Varangle$ STQ 81°
\#22

Prove a.) $m \widehat{A B}+m \widehat{C D}=2(m \Varangle C E D)$

$$
\begin{aligned}
& m X D=\frac{1}{2}(\overparen{A B}) \\
& m \triangle D A C=\frac{1}{2}(\overparen{D C}) \\
& \begin{aligned}
\frac{1}{2}(m \overparen{A B})+\frac{1}{2}(m \overparen{D C}) & =m \not \subset D+m \not \subset D A C \\
m \widehat{A B}+m \widehat{D C} & =2 \cdot m \not \subset D+2 \cdot m \not \subset D A C \\
& =2(m \not \subset D+m \not \subset D A C) \\
& =2(m \not \subset C E D) \leftarrow \text { exterior } \& \text { theorem }
\end{aligned}
\end{aligned}
$$

b. prove $A E \cdot E C=B E \cdot E D$
\#23

1. Given
2. $\odot 0$

3. $\Varangle D A E \cong \Varangle E B C$
4. $\triangle A D E \sim \triangle B C E$
5. $\frac{A E}{B E}=\frac{E D}{E C}$
6. $A E \cdot E C=B E \cdot E D$ 6. Means Extremes Product The

Use triple!

$$
\begin{aligned}
& x=2.5 \\
& R \beta=4
\end{aligned}
$$

\#24

RHOM is a rhombus
Find m HM
$m x R=180-x \quad(\tan -\tan x)$
so: $180-x=\frac{1}{2} x$
$m x 0=\frac{1}{2} x \quad$ (inscribed $\left.x\right)$
$180=\frac{3}{2} x$
$\triangle R \cong 40 \quad(o p p 4 \times s \cong)$

