\# 19
If 2 of 7 circles are chosen at random, what is the probability that the chosen pair are
a. Internally tangent

$$
2 / 7
$$

b. Externally tangent

$$
3 / 7
$$

C. Not tangent

$$
2 / 7
$$

\#20 find, to the nearest tenth, the distance between two arcles if their radii are 1 and 4 , and the length of the common external tangent is $7 \frac{1}{2}$

$$
\begin{aligned}
3^{2}+7.5^{2} & =x^{2} \\
9+56.25 & =x^{2} \\
65.25 & =x^{2} \\
8.1 & \approx x \\
8.1-4-1 & =3.1
\end{aligned}
$$

\#24 Find the coordinates of the center of the circle that is tangent to the y-axis and intersects the x-axis at $(8,0)$ and $(18,0)$

\#25 Given: Two Concentric circles wi center E

$$
\begin{aligned}
& A B=40 \\
& C D=24 \\
& \overline{C D} \perp \overline{A E} \\
& A B \text { tangent at } C
\end{aligned}
$$

Find: AF
alt. on hypotenuse

$$
\begin{aligned}
12^{2} & =E G \cdot 16 \\
144 & =16 E G \\
E G & =9
\end{aligned}
$$

$$
\text { So } A F=16-6
$$

$$
=10
$$

\#27 Given (s) E and F w/ $\overline{A C}$ tangent at B and C

$$
\begin{aligned}
& D E=10 \\
& F B=4
\end{aligned}
$$

Find: $A B$

$$
\begin{aligned}
x^{2}+6^{2} & =14^{2} \\
x^{2}+3^{2} & =7^{2} \\
x^{2} & =40 \\
x & =2 \sqrt{10} \\
x & =4 \sqrt{10}
\end{aligned}
$$

note: $\triangle C E A \sim \triangle B F A$

$$
\begin{aligned}
& \frac{a}{4 \sqrt{10}+a}=\frac{4}{10} \\
& 10 a=4(4 \sqrt{10}+a) \\
& 10 a=16 \sqrt{10}+4 a \\
& \frac{6 a}{6}=\frac{16 \sqrt{10}}{6} \\
& a=\frac{8 \sqrt{10}}{3} \quad A B=\frac{8 \sqrt{10}}{3}
\end{aligned}
$$

\#29

