10.3
p. 454 : 1-4, 9-13, 18, 19, 24
\#1 a. 6
e. 3
b. 2
f. 1
c. 5
g. 1
\#2 a. $\overparen{Q R P}$
b $\overparen{B C}$ or $\overparen{A B}$
c 180°
d. $m \overparen{P Q}$
e. No
\#3 a. $m \overparen{B C} 90^{\circ}$
b. $m \overparen{A D} 130^{\circ}$
c. $m \overparen{A C D} 230^{\circ}$
d. $m \overparen{B A D} 180^{\circ}$
e. $m \overparen{A D C} 220^{\circ}$
c

\#4

\#9
a. $8^{\circ} \quad 1 / 45$
b. $240^{\circ} \quad 2 / 3$
c. $144^{\circ} \mathrm{2} / 5$
d. $315^{\circ} 7 / 8$
\#10 a. $3 / 5 \quad 216^{\circ}$
b. $5 / 9 \quad 200^{\circ}$
c. $70 \% \quad 252^{\circ}$
11) Given: $A D$ is a diameter of circle E C is midpt of $\widehat{B D}$

$$
m A B=9 x+30
$$

$$
m \widetilde{C D}=54-x
$$

Find: $m \times A E C$

$$
\begin{array}{r}
9 x+30+54-x+54-x \\
7 x+138=180 \\
7 x=42 \\
x=6
\end{array}
$$

$$
\begin{aligned}
m \triangle A E C & =9 x+30+54-x \\
& =8 x+84 \\
& =8(6)+84 \\
& =48+84 \\
m \triangle A E C & =132^{\circ}
\end{aligned}
$$

12) Find the length of the chord that cuts off an arc measuring 60 in a circle with a radius of 12.

chord $=12$
\#13
Find the length of each arc described. (The length is a fractional part of the circumference)
a. An arc that is $5 / 8$ of the circumference of a circle with radius 12

$$
\begin{array}{ll}
C=\pi d & \frac{5}{8} \cdot 24 \pi=1 \\
C=24 \pi & 15 \pi
\end{array}
$$

b. An arc that has a measure of 270 and is part of a circle with radius 12

$$
\frac{270}{360}=\frac{3}{4}
$$

$$
C=24 \pi
$$

$$
\frac{3}{4} \cdot 24 \pi=18 \pi
$$

\#18

Find m arc cut off by side of polygon if
a. regular hexagon $\frac{360}{6}=60^{\circ}$
b. regular pentagon $\frac{360}{5}=72^{\circ}$
c. regular octagon $\frac{360}{8}=45^{\circ}$
\#19
a. Find radius

$$
\begin{aligned}
& r=\sqrt{(-5-0)^{2}+(5-0)^{2}} \\
& r=\sqrt{25+25} \\
& r=\sqrt{50} \\
& r=5 \sqrt{2} \leftarrow O R=\begin{array}{l}
\text { recognize } \\
45 ; 45 ; 90
\end{array}
\end{aligned}
$$

b.

$$
\begin{aligned}
\overparen{P Q} & =45+90 \\
& =135^{\circ}
\end{aligned}
$$

\# 24

Find $P Q$
Radii $=x+x+1$
$=2 x+1$
$\begin{aligned} x^{2}+4^{2} & =(2 x+1)^{2} \\ x^{2}+16 & =4 x^{2}+4 x+1 \\ 0 & =3 x^{2}+4 x-15 \\ 0 & =(3 x-5)(x+3)\end{aligned}$
$x=\frac{5}{3},-3$

$$
P Q=\frac{5}{3}+\frac{5}{3}=\frac{10}{3}
$$

