Precalculus Section 10.1

A World of Probability

Do you feel lucky?

Often times, fans will buy tickets for a specific game or session of a sports tournament without knowing which specific teams or players will be playing. Imagine you buy tickets to watch one game of a 6 team Math tournament in which all teams play one another once in a round-robin format.

How many total games will be played? $6^{\circ}2 = \frac{6 \cdot 5}{2} = 15$

What is the probability that you were lucky enough to buy tickets to the match-up of your two favorite teams, the Precalculus Predators and Trigonometric Titans?

 $\frac{1}{15}$

Heads? I win! Tails? You lose!

A fair coin is tossed 5 times. What is the probability that the 5 tosses result in exactly 4 heads?

5(4

Probabilities you know

Scott and Brad are competing with a third contestant on Fear Factor who just scored a time of 45 seconds on the last task. Scott believes that he has a 0.85 probability of beating the time and Brad thinks that he has a .60 probability of beating the time. What is the probability that:

a. Scott does not beat the time?

1-.85 = .15

b. Scott beats the time and Brad does not beat the time?

16 Interaction

I thought the movie started at 7:30pm!

A couple and eight of their friends are running late for a movie, so in the darkened theater, they randomly sit down in a row. What is the probability that the couple happens to sit next to each other?

Politics!

A town council consists of eight democrats, seven republicans, and five independents. A committee of three is chosen randomly by pulling names from a hat. What is the probability that the committee contains:

Samplespace: 2063

three independents? 70C > b)

c)

- d) Without performing any calculations, which would be larger - the probability the committee only contains republicans or the probability the committee only contains democrats? Why?

Roll 'em!

Two six-sided dice are tossed. (Did you know that the "dots" on dice are called pips?)

a) What is the probability that the total is nine?
$$3+6$$
 $4+6$ $5+4$ $6+3$

- Sample space: 6.6
- b) What is the probability that the total is at least nine?

Part a + 5+5 6+5 5+6 6+6 4+6 6+4

$$\frac{4}{36}$$
 + $\frac{1}{36}$ + $\frac{1}{36}$ + $\frac{1}{36}$ + $\frac{1}{36}$ = $\frac{10}{36}$

c) What is the probability that the total is odd?

A group of 5 married couples elects a committee of four to plan their group social outings. If the committee is chosen at $random, what is the probability that the committee includes \underline{no} \ two \ people \ who \ are \ married \ to \ each \ other?$

$$\left(\frac{2^{\zeta_{1}\cdot 2^{\zeta_{1}\cdot 2^{\zeta_{1}\cdot 2^{\zeta_{1}\cdot 2^{\zeta_{1}}}}}}{10^{\zeta_{4}}}\right) \cdot 5^{\zeta_{4}} \stackrel{\text{OC}}{=} \frac{10}{10} \cdot \frac{8}{9} \cdot \frac{6}{8} \cdot \frac{4}{7}$$