1) Change to degrees and minutes
a) $61 \frac{2}{3}^{\circ}$
$\frac{2^{\circ}}{3} \cdot \frac{60^{\prime}}{1^{\circ}}=\frac{120^{\prime}}{3}=40^{\prime}$
b) 71.7°
$61^{\circ} 40^{\prime}$

$$
\begin{aligned}
& .7^{\circ} \cdot \frac{60^{\prime}}{1^{\circ}}=42^{\prime} \\
& 71^{\circ} 42^{\prime}
\end{aligned}
$$

2) Change each of the following to degrees:
a) $132^{\circ} 30^{\prime}$
b) $19^{\circ} 45^{\prime}$
$30^{\prime} \cdot \frac{1^{\circ}}{60^{\prime}}=\frac{1}{2}^{\circ}$
$45^{\prime} \cdot \frac{1^{\circ}}{60^{\prime}}=\frac{30}{4}$
$132 \frac{1}{2}^{\circ}$
$19^{\frac{3}{4}}$
4. a. $\overrightarrow{Q V} \cap \overleftrightarrow{T S} T$
b. $\overline{W P} \cap \overline{V R} \overline{V W}$
c. $\overrightarrow{W P} \cup \overrightarrow{V R} \overleftrightarrow{P R}$
d. $\overrightarrow{S Q} \cup \overrightarrow{S R} \not \& Q S R$
e. How many angles have 6
 vertex Q
5) a) $49^{\circ} 32^{\prime} 55^{\prime \prime}$
b) $\begin{aligned} & 123^{\circ} 15^{\prime} \\ & -40^{\circ} 26^{\prime}\end{aligned} \frac{\begin{array}{c}122^{\circ} 75^{\prime} \\ -40^{\circ} 26^{\prime}\end{array}}{82^{\circ} 49^{\prime}}$
$86^{\circ} 60^{\prime} 10^{\prime \prime}$
$87^{\circ} 10^{\prime \prime}$
6) If $\Varangle C B D \cong \Varangle D B E$

Find $m \nleftarrow A$

$$
\begin{array}{rr}
x+10=60 & \forall A=x+5 \\
x=50 & =50+5 \\
& x A=55^{\circ}
\end{array}
$$

\#9 Find the measure of the angle formed by the hands of a clock at each time.
a. 3:00
b. $4: 30$
c. 7:20
d. $1: 45$
d.
142.5
\#10
a. Find $P Q$
5

b. If R 's coordinate is 7, why is $\overline{P Q} \neq Q R$? $\overline{Q R}=4$

$$
\overline{P Q} \neq \overline{Q R}
$$

c. What must the coordinate of R
be in order for Q to be the midpt
of $\overline{P R}$
\#11 Given: 4 CAR is a right 4 $\mathrm{m} \triangle C A T$ is $37^{\circ} 66^{\prime} 10^{\circ}$
Find: $m \Varangle$ RAT

90	
$-37^{\circ} 66^{\prime} 10^{\prime \prime}$	$\Rightarrow \begin{array}{r}89^{\circ} 59^{\prime} 60^{\prime \prime} \\ -38^{\circ} 6^{\prime} 10^{\prime \prime} \\ 51^{\circ} 53^{\prime} 50^{\prime \prime}\end{array}$

14) $\overline{X S} \cong \overline{Y T}, \overline{X_{S}} \cong \overline{X T}$

$$
\begin{array}{cc}
3 m+7=4.2 m+5 & 3 \frac{1}{2} r+2=2 r+5 \\
\frac{2=1.2 m}{1.2} & 3 \frac{1}{2} r=2 r+3 \\
m=\frac{5}{3} & \frac{-2 r \quad-2 r}{1 \frac{1}{2} r=3} \\
& \frac{3}{2} r=3 \\
r=21
\end{array}
$$

15)

$$
\begin{array}{lr}
x 1 \cong x 2 & \\
m \times 1=x+14 \\
m \times 2=y-3 & x+14=y-\beta \\
\text { Solve for } y \text { in terms } & +3+3 \\
\quad \text { of } x . & x+17=y
\end{array}
$$

16) If $\angle P O A$ is a right 4 and if $\angle P O C$ is 3 times as large as $\Varangle C O A$, find $m \& P O C$

$$
\begin{array}{rlr}
3 x+x & =90 & m \times P O C
\end{array}=3(22.5)
$$

17. $\angle P$ is acute
$\angle P$ is acute
a. What are the restrictions on $m<P$? $0<m \& P<90$
b. What are the restrictions on x ?

$$
\begin{aligned}
& 0<3 x-60<90 \\
& 60<3 x<150 \\
& 20<x<50
\end{aligned}
$$

18. The hand is at 12 on the clock
a. If the hand were rotated 90° clockwise at what number would it point?
b. If the hand were rotated clockwise 150° and then 30° counterclockwise, at
\#19 $\angle A B C$ and $\angle C B D$ have the same measure.

$$
\left.\begin{array}{rl}
\angle A B C \text { and } \triangle A B C & =\left(\frac{3 x}{2}+2\right)^{\circ} 95.75^{\circ} \\
\qquad C B D & =\left(2 x-29 \frac{1}{4}\right)^{\circ} 95.75^{\circ}
\end{array}\right\}+\left(991.5^{\circ} \mathrm{NO} .3\right.
$$

Is $\Varangle A B D$ a straight $\Varangle ? \quad \frac{3 x}{2}+2=2 x-29.25$

$$
\begin{aligned}
& 31.25=\frac{1}{2} x \\
& 62.5=x
\end{aligned}
$$

\#20 Change $15 \frac{2}{9}^{\circ}$ to degrees, minutes, and seconds.
Change $\frac{2}{9}^{\circ}+0^{\prime} \quad \frac{2}{9}^{\circ} \cdot \frac{60^{\prime}}{1^{\circ}}=\frac{120^{\prime}}{9}=13 \frac{1}{3}^{\circ}$
Change $\frac{1}{3}^{\prime}$ to " $\frac{1}{3}^{\prime} \cdot \frac{60^{\prime \prime}}{11}=\frac{60^{\prime \prime}}{3}=20^{\prime \prime}$

$$
15^{\circ} 13^{\prime} 20^{\prime \prime}
$$

\#21 Given: \Varangle TRS is a straight \Varangle $\Varangle T R X$ is a right 4

$$
\begin{aligned}
& m \Varangle T R S=2 x+5 y \\
& m \Varangle \times R S=3 x+3 y
\end{aligned}
$$

Solve for x and y

$$
\begin{aligned}
&-3(2 x+5 y=180) \Rightarrow-6 x-15 y=-540 \\
& 2(3 x+3 y=90) \Rightarrow \frac{6 x+6 y}{}=180 \\
&-9 y=-360 \\
& y=40
\end{aligned}
$$

$$
\begin{aligned}
& 3 x+3(40)=90 \\
& 3 x+120=90 \\
& 3 x=-30 \\
& x=-10
\end{aligned} \quad \begin{aligned}
& x=-10 \\
& y=40
\end{aligned}
$$

\#23 Change $72^{\circ} 22^{\prime} 30^{\prime \prime}$ to degrees
Change " \rightarrow, $30^{\prime \prime} \cdot \frac{11}{60^{\prime \prime}}=\frac{1}{2}^{\prime}$

$$
72^{\circ} 22 \frac{1}{2}^{\prime}
$$

change ${ }^{\prime} \rightarrow 0 \quad 22.5^{\prime} \cdot \frac{1^{\circ}}{60^{\circ}}=\frac{3^{\circ}}{8}$

$$
72 \frac{3}{8}^{\circ}
$$

